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Abstract

The objective of this paper is to study the dependent elements of a left (right)
reverse bimultipliers on a semiprime ring. A description of dependent elements of
these maps is given. Further, we introduce the concept of double reverse (o, T)-
Bimultiplier and look for the relationship between their dependent elements.
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1. Introduction

Throughout this work, unless otherwise mentioned, R denotes an associative ring with center Z(R).
Recall that a ring R is prime in case aRb = (0) implies that either a=0 or b=0, and semiprime ring if
aRa =(0) implies a=0. For any x,y €R, the symbol [x, y] will denote the commutator xy — yx. We shall
make extensive use of the commutator identities [xz, y] = X[z, y] + [X, Y]z and [x, yz]= y[X, z]+[X, y]z.
A biadditive mapping B: RxR—R is called a left (right) reverse a-bimultiplier if:
B(xy, z) = B(Y, 2) a(x) & B(x, yz) = B(X, z)a(y)
(B(xy, 2) = aly) B(X, 2) & B(X, yz) = a(z) B(X, y)), holds for all x,y,z €R.
The mapping B is called a reverse @-bimultiplier if it is both left and right reverse a-bimultiplier [1].
In case @ = I, then B is called reverse bimultiplier.
A. H. Majeed and the author in [2] introduce the concept of dependent elements of mappings of the
form (, ): RXR —R as follows: An element a €R is called a dependent element of F: RXR —R if
F(x, y)a = ayx holds for all x, y €R. The collection of all dependent elements of F denotes by D(F).
A mapping F is said to be a free action in case zero is the only dependent element.
An ideal U of R is said to be essential if UNV={0}, for any nonzero ideal V of R [3]. It is known that
the annihilators of U (denoted by ann(U)) is defined by ann(U)= r(U) N £(U), where £(U) and r(U)
denotes to the left and right annihilators of U (see[4] :p.62), furthermore, If R is a semiprime ring,
then the left and right and two-sided annihilators ann(U) of U coincide [5].
In this paper we present some results concerning the dependent elements and free action associated to
right reverse e-bimultiplier. Also, for mappings o, T : R—R, we introduce the notion of the double
reverse (o, 7)-Bimultiplier.
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Definition (1.1):

Let R be a ring, U be a subring of R. For any biadditive mappings S, 7': UxU—R, the pair (T, S)
is called a double reverse (o, T)-bimultiplier of U if T is a left reverse o-bimultiplier and S is a right
reverse t-Bimultiplier of U, as well as they satisfy a stability condition ©(z) T (x, y) = S(y, z) a(x), for
all x,y,z €U, where ¢ and 7 are endomorphisms of R.

Remark (1.2):

When g =1 = Ig, then the pair (7, §) is said to be a double reverse bimultiplier of U.
Example (1.3):

Let Q be a commutative ring, and R be the set

0
R ={(Z C), a,b,ceQ}.
Then R is a ring with respect to the usual operation of addition and multiplication of matrices, also

Choose

{5 ). aco)

Define Symmetric biadditive mappings S, 7: UxU—R, and endomorphisms o, t: R —R such that:
(5 @)l p)=(p o)

s(G 26 D= a)

(5 D=5 o)

& - 9

Then (7, §) is double reverse (g, 7)-bimultiplier of U. ~
2. Preliminary results
We begin with the following lemmas which are essential in developing the proof of our main
results.
Lemma (2.1): [3]
Let 7 be an ideal of a semiprime ring R, then 7 @ ann(J) is an essential ideal of R.
Lemma (2.2): [6]
Let R be a simeprime ring, and a €R satisfies a[a, x] =0, for all x €R, then a €Z(R).
Lemma (2.3): [7]
Let R be a semiprime ring, and a €R be some fixed element. If a[x, y] =0, for all x,y €R , then there
exists an ideal U of R such that a eUcZ(R).
Lemma (2.4): [8]
If R is a semiprime ring and U is an ideal of R, then U Nann(U) ={0}.
Lemma (2.5): [8]
If R is a semiprime ring, then the center of a nonzero one-sided ideal is contained in the centre of R.
In particular, any commutative one-sided ideal is contained in the centre of R.
Remarks (2.6): [9]
If R is a semiprime ring, and U an ideal of R, it's easy to verify that U is a simeprime as subring of R.
3. Main results
We start our main results with following theorem which describe the dependent elements of a left
reveres Bimultiplier over a simeprime ring.
Theorem (3.1):
Let R be a simeprime ring and 7: RXR —R be a left reveres bimultiplier, a €R. Then a € D(T) if
and only if a €Z(R) and T°(a, y)=ay holds for all y €R.
Proof:
Suppose a € D(T), then
T(x, y)a=ayx, forall x,yeR. 1)
We consider
T (xa’w, y)= T'(w, y) a’x= aywax = T (wax, y)a
T(x, y)awa= T (awax, y) = T(ax, y)aw = T(X, y)a’w
Hence
T(x, y)awa= T(x, y)a’w, for all x, y,w €R.
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That is
T(x, y)a[a, w]=0, for all x, y, w €R. 2
According to (1), the above relation becomes:
ayx [a, w]=0, forall x, y, w €R. 3)
Putting aw for w in (3) gives:
ayx a[a, w]=0, for all x, y, w €R. 4)
Replacing y by [a, w] in (4), we get:
ala, w] xa[a, w]=0, for all x,, w €R. ()

The semiprimeness of R leads to:
a[a, w] =0, for all w €R. (6)
An application of Lemma (2.2) implies that a €Z(R). So for any y, w €R, we have:
ayo=T(w,y)a=T(aw,y) =T (wa, ¥)=T(a, y) w.
That is
(T(a,y) —ay) w =0, for all y, w €R.
Using the semiprimeness of R, we get:
T(a, y)=ay, forall yeR.
Conversely, suppose a €Z(R) and 7 (a, y)=ay holds for all y €R, then:
T(x,y)a=7(ax y)=T(xa, y)=T(a, y) x= ayx, for all x, y €R.
Hence a € D(T) and the proof is complete. ~

Following is an immediate corollary of the above theorem.
Corollary (3.2):
If R is a simeprime ring with Z(R)={0}, then the left reveres bimultiplier 7: RXR —R is free action.
The following theorem shows that every dependent element a of a left reveres bimultiplier gives rise
to a central ideal of R generated by a.
Theorem (3.3):
Let R be a simeprime ring and 7: RxR—R be a left reveres bimultiplier. Suppose that a €R is a
dependent element of 7. Then there exist a central ideal U of R contains a.
Proof: Let a € D(T), then a € Z(R) by Theorem (3.1), and
T(x, y)a =ayx, for all x, y €R. Q)
Putting xw for x in (1), we get:
T (w, y)ax = ayxw, for all x, y,w €R.
According to (1), the above relation reduces to:
y a[w, X] = 0. for all X, y,w €R. 2
Multiplying (2) by a[w, X] from the left, we obtain:
alw, X]y aJw, X] = 0. for all X, y,w €R.
Since R is a semiprime ring, we get:
a [w, X] = 0. for all x,w €R. 3)
From (3) and Lemma (2.3) it follows that there exist an ideal U of R such that a eUcZ(R).
The following Theorem gives necessary conditions that force a left reverse bimultiplier to be a free
action.
Theorem (3.4):
Let R be a non-commutative prime ring and 7: RxR—R be a left reverse bimultiplier, then T is
free action.
Proof: Let a € D(T), then a € Z(R) and we have:
T(x, y)a=ayx, forall x, y €R. 1)
Putting xz for x in (1) gives:
T(z, y)xa = ayxz, for all x,y,z €R. 2
Since a € Z(R), then the above relation can be written as:
T(z, y)ax = ayxz, for all x,y,z €R.
The above relation reduces because (1) to:
aR[x, z] =0, for all x,z €R.
Since R is a non-commutative prime ring we conclude that a=0. So T is free action. -
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Theorem (3.5):
Let R be a semiprime ring and a€R. Then a € D(S) for a right reverse bimultiplier S: RXxR —R if and
only if a is a central and S(x, @) =ax holds for all xeR.

Proof:
Suppose a € D(S), then we have:
S(x, y)a = ayx, forall x, y €R. 1)
We consider
a’yx =aS(x, y)a = S(x, ya)a = ayax, for all x,y €R.
That is

a[a, y]x, for all x,y €R.
The semiprimeness of R leads to a[a, y]=0, for all y €R. Then an application of Lemma (2.2) implies
that a €Z(R). So for any w €R, we have:
wSKX a) =8, aw) =85(X, wa) =asS(x, w)
=S5(X, w)a=awx = wax.
Equivalently
w(S(x, a)- ax)=0, for all x,w €R.
Using the semiprimeness of R leads to:
S(x, a) =ax, for all x €R.
Conversely, suppose a €Z(R) and S(x, a) =ax, for all x €R, then:
S(x,w)a=as(x w) =8X, wa)=8(X, aw)=w S(X, )= wax = awX
Consequently, a € D(S). This completes the proof of the theorem.
Theorem (3.6):
Let R be a semiprime ring and a €R is an element dependent on a right reverse bimultiplier S:
RxR—R. Then there exists a central ideal of R contains a.
Proof: Leta € D(S), thena € Z(R) by Theorem (3.5), and
S(x, y)a = ayx, forall x, y €R. Q)
Putting wy for y in (1), we get:
y S(x, w)a = awyx, for all x, y,w €R.
According to (1), the above relation reduces to:
[y, aw] x = 0, for all x,y,w €R.
The simeprimeness of R leads to:
[y, aw] = 0, for all y,w €R.
That is
aly, w] =0, for all y,w €R. 2
An application of Lemma (2.3) on (2), it follows that there exist a central ideal U of R contains a.
Theorem (3.7):
Let R be a semiprime ring and 7: RxR —R be a reverse bimultiplier. Then there exist ideals % and
J of R such that:

@ K @ Jis an essential ideal of R.
2) T(J, Je<d.
3) T is free action on J.
Proof:
Let a, b be elements in D(T), then by Theorem (3.1), we have a,b € Z(R), T(a, y) = ay and T'(b, y)
= by, for all y €R.

Since Z(R) is a subring of R, then a-b €Z(R). Moreover

T(a-b,y) =T (a, y)- T(b, y) = ay — by = (a-b)y, for all y €R.
Hence a-b € D(T).
Also, for any a € D(T) and r €R, we have a € Z(R) and T'(a, y) = ay, furthermore

T(x,y)ar=ayxr=yxar=yx T (a, N=y T (ax, r)
=T (ax, ry)=T(a, ry) x =aryx

That is ar € D(T), and consequently D(7) is an ideal of R.
Now, choose = D(T) and J= ann(¥), then J is an ideal of R and N J={0} by Lemma (2.4), also
K @ Jis an essential ideal of R by Lemma (2.1).
For the second requirement, let x, y € 7, then:
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xa = ax =0, and ay = ya=0, forall a € XK.
Moreover
T(x, y)a = ayx =0.
Hence 7(J, J)c J.
Finally, by Remark (2.6) we have J is a semiprime ideal of R, also, by Lemma (2.5) we get Z(J)<
Z(R).
Now, let c € J be a dependent element of the restriction of 77 on 7, then by Theorem (3.1) we have ¢
€ Z(J)< Z(R). Moreover
T(c,z)=cz, forall z €.

Left multiplication by r, we get:

r7(c, z)=rcz forall z€ J,reRr.
Equivalently

T(c, zr)=crzg, forall z€ J,reR.
That is

T(,r)z=crz, forall z€J, reRr.
Consequently

(T(c,r)-cr)z =0,forallre Rand z € J.
The semiprimeness of J leads to:
T(c,r)=cr, forallreRr.
This leads to c € D(T7) = K. So we have ce KN J= {0}.
Hence T is free action on J. r
Theorem (3.8):
Let R be a semiprime ring, and (7', §) is a double reverse bimultiplier of R. In this case D(T) =

D(S)
Proof: For any x,y,z €R, we have:

zT(xy) =S(y, )X 1)
Let a € D(T), then by Theorem (3.1) we get a € Z(R) and
T (x, y)a =ayx, for all x,y €R. 2
Now, replacing x by ax in (1) leads to:
ZT(x,y)a=8(y, 2)ax, for all x,y,z €R. 3)

In view of (2), the above relation reduces to:
zayx = S(y, z)ax, for all x,y,z €R.
Equivalently
(S(y, 2)a —azy)x =0, for all x,y,z €R.
The semiprimeness of R leads to:
S(y, 2)a = azy, for all y,z €R.
Hence a € D(S), and consequently D(7)< D(S).
Conversely, let a € D(S), then a € Z(R) by Theorem (3.5). Also,
S(y, ax=asS(y, 2)x = S8(y, za)x =8 (y, az)x =z8(y, a)x=zayx, for all x,y,z €R. 4)
In view of (4), the relation (3) reduces to:
2T (x, y)a = zayx, for all x,y,z €R.
Therefore
2(T(x, y)a—ayx)=0, for all x,y,z €R.
Since R is a semiprime ring, then a € D(T), that is D(S)<S D(T). ”
Theorem (3.9):
Let R be a simeprime ring and 7: RXR— R be a left reveres a-bimultiplier, where « is a surjective
endomomorphism of R with @ = I (7y. Then D(T)ESZ(R).

Proof:
Suppose a is a dependent element of T, then
T(x, y)a = ayx, for all x, y €R. 1)
We consider
T (xa’w, y)= T (w, ) &(a%) ()= aywa a(x)= T (wa &(X), y)a
Hence
T (xa’w, y) = T (awa (), y)a, for all x, y,w €R. (2)
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From (2), we obtain:
T(xa’w, y) = T(a(x), y) & o{w)a

=ay a(x) o(w)a, for all x, y,w €R. (3)
T(xa’w, y) =T (a a(x), y)a a(w)
=T (a(X), y)a’ a(w) =ay a(X)a a(w), for all X, y,w €R. (4)
Comparing (3) and (4), we arrive at:
ay (x)[a, &(w)]=0, for all x, y, w €R. (5)
Putting a(w)y for y in (5), we get:
aa(w)y a(x) [a, &(w)]=0, for all X, y, w €R. (6)
Left multiplication of (5) by a(w) gives:
a(w)ay a(X) [a, &(w)]=0, forall x, y, w €R. (7
Subtracting (7) from (6), we obtain:
[a, A(w)]y &(X) [a, «(w)]=0, for all X, y, w €R. (8)

Left multiplication of (8) by «(x), then using the semiprimeness of R gives first:
2(x) [a, a(w)]=0, for all y,w €R.
Consequently, (recall that « is surjective) [a, a(w)] =0, for all w €R, this means a €Z(R).
In the following two results we describe the dependent elements of the composition of a left (right)
reverse a-Bimultiplier with its associative homomorphism.
Theorem (3.10):

Let R be a semiprime ring and 7': RxR—R be a right reverse e-bimultiplier. If a is an element
dependent on the mapping ¢ = @o T, where « is an endomomorphism of R with @ =Ip ), then a €
Z(R).

Proof: Since a € D(¢), where ¢ = @o T then we have:

(@0 T)(x, y)a= ayx, for all x,y €R. 1)
The substitution xew for x in (1) gives:

a (ew) T (X, y))a= ayxw, for all x,y €R.

That is
(w) (@o T)(X, y)a= ayxw, for all x,y, w €R. 2
According to (1), the above relation reduces to:
a?(w)ayx= ayxw, for all x,y, w €R. 3)
Taking w = a in (3), we obtain:
ala,y]x +ay[a, x]=0, for all x,y €R. 4)
Replacing x by xz in (4), then using (4), we obtain:
ayz[a, x]=0, for all x,y,z €R. (5)
Left multiplication of the above relation by x, we get:
xayz[a, x]=0, for all x,y,z €R. (6)
Also, putting xy for y in (5) gives:
axyz[a, x]=0, for all x,y,z €R. @)
Subtracting (6) from (7), we arrive at:
[a, X]yz[a, x]=0, for all x,y,z €R. (8)

Right multiplication of (8) by y, since R is a simeprime ring, we get first:
y [a, X]=0, for all X,y €R,
and then [a, x]=0, for all x €R. That is a € Z(R).
Theorem (3.11):
Let R be a semiprime ring and 7: RXxR—R be a left reverse a-bimultiplier. If a is dependent
element of ¢ = @o T, where « is an anti-homomorphism of R with @ =I,,, then a € Z(R).
Proof:
Since a € D(¢), then (X, y)a= ayx, for all x,y €R.

That is
(@0 T)(x, y)a= ayx, for all x,y €R. 1)
The substitution xw for x in (1) gives:
2(X) (@0 T)(w, y)a= ayxw, for all x,y, w €R. 2
According to (1), the above relation reduces to:
a2(X)ayw= ayxw, for all x,y, w €R. 3
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Taking x= a in (3), we obtain:

[a, ay] w=0, for all y, w €R. 4)
Left multiplication of (4) by [a, ay], since R is a semiprime ring, we arrive at:
a[a, y]=0, for all y €eR. (5)
From (5) and Lemma (2.2), we conclude that a € Z(R). ~

Theorem (3.12):
Let 7" be a right reverse a-bimultiplier of a semiprime ring R, then ¢: RXR —R defined by ¢(x, y)
= [T(x, ¥), &(X)], for all x,y €R is free action, where « is a surjective endomomorphism of R, with «

=Ip ().
Proof:
Let a € D(¢p), then (X, y)a = ayx, for all x,y €R, that is:
[T(x,y), a(x)]a = ayx , for all x,y €R. 1)
The linearization of (1) with respect to x gives:
[T Y), a(w)]a+[T(w,y), a(x)] a=0, for all x,y,w €R. 2

Putting wa instead of w in (2), we get:

[7(x, y), a] d{w)a+a[T(x,y), d{w)]a +a[T(w,Y), aX]a +[a, «X)] T (w, y)a =0.
According to (2), the above relation reduces to:

[T(x,y), a] e(w)a+[a, a(X)] T (w, y)a =0, for all x,y,w €R. 3)
Taking x=a in (3), we get:
[T(a,Y), a] «(w)a =0, for all y,w €R. 4)
The substitution &(w) 7 (a, y) for a(w) by in (4) leads to:
[T(a,y), a] «(w) T (a, y)a=0, for all y,w €R. (5)
Multiplying (4) from the right by 7'(a, y) gives:
[T(a,y), a] «(w) aT(a,y) =0, for all y,w €R. (6)

Subtracting (6) from (5), we arrive at:
[T(a y).a] a(w) [T(a, y),a] =0, for all y,w €R.
Since R is a semiprime ring, and « is surjective, then we have:
[T(a, y),a] =0, for all y €R. @)
Right multiplication of (7) by a gives:
[T(a, y),a]Ja =0, for all y €R.
In view of (1), the above relation reduces to:
aya=0,forallyeR.

The semiprimeness of R leads to a=0, hence ¢ is free action. y
References
1. Ashraf M. 2010. On Symmetric Generalized (a, B)-Deriavations in Rings, International Congress

of mathematicians, Hyderabad, India, August, pp:19-27.
2. Majeed A. H. and Mahmood A. H. 2015. Dependent Elements of Biadditive Mappings on
Semiprime Rings, Journal of Al-Nahrain University, 18 (2), June, pp:141-148.
Bresar M. 1991.Centralizing Mapping on Von-Neumann Algebras, American Mathematical
Society, 111(2), pp:501-510.
Herstein 1. N. 1969. Topics in Ring Theory, University of Chicago Press.
Bresar M.1989. Jordan mapping of semiprime rings, J. Algebra, 127, pp:218-228.
Herestein 1. N. 1976. Rings with involution, The University of Chicago Press, Chicago.
Zaidi S. M. A., Ashraf M. and Ali S.2004. On Jordan ideals and (6, 6)- derivation in prime rings,
IIMMS 37, pp:1957-1964.
8. Ali S., Dhara B., and Khan M. S. 2014. On Prime and Semiprime Rings with Additive Mappings

and Derivations, Universal Journal of Computational Mathematics, 2(3), pp:48-55.
9. Samman M. S. and Chaudhry M. A.2008.Dependent Elements of Left Centralizers of Semiprime

Rings", the Arabian Journal for Science and Engineering, 33(2A), pp: 313-319.

w

No ok

978



