Abdulridha and Majeed

Iraqi Journal of Science, 2023, Vol. 64, No. 6, pp: 3044-3053 DOI: 10.24996/ijs.2023.64.6.32

ISSN: 0067-2904

On Γ-n- (Anti) Generalized Strong Commutativity Preserving Maps for Semiprime Γ-Rings

Ahmed A. Abdulridha, Abdulrahman H. Majeed

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 1/8/2022 Accepted: 7/10/2022 Published: 30/6/2023

Abstract.

In this study, we prove that let N be a fixed positive integer and *R* be a semiprime Γ -ring with extended centroid C_{Γ} . Suppose that additive maps f and $g: R \to R$ such that f is onto, satisfy one of the following conditions (i) f and g belong to Γ -N-generalized strong commutativity preserving for short; (Γ -N-GSCP) on R (ii) f and g belong to Γ -N-anti-generalized strong commutativity preserving for short; (Γ -N-GSCP) on R. Then there exists an element $\lambda \in C_{\Gamma}$ and additive maps $\xi, \eta_1 \text{ and } \eta_2 : R \to C_{\Gamma}$ such that is of the form $g(x^n) = \lambda \alpha x + \xi(x)$ and $f(x) = \lambda^{-1} \alpha x + \eta_1(x)$ when condition (i) is satisfied, and $f(x) = -\lambda^{-1} \alpha x + \eta_2(x)$ when condition (ii) is satisfied for all $x \in R$ and $\alpha \in \Gamma$.

Keywords: semiprime Γ -ring, extended centroid, Γ -N-anti-generalized strong commutativity preserving maps.

حول تعميم الدوال الحافظة للابدالية (المضادة) القوبةΓ-N من حلقات كاما شبه الاوليه

² احمد عباس عبد الرضا¹, عبد الرحمن حمید مجید ² قسم الریاضیات، کلیة العلوم، جامعة بغداد، بغداد، العراق

الخلاصة

 Γ في هذا البحث نثبت الاتي ، لنفترض أن N عددًا صحيحًا موجبًا ثابتًا وأن يكون R شبه اوليه حلقة $-\Gamma$ مع النقطة الوسطى الممتدة C_r . افترض أن الدوال التجميعية $R \to R \to g: R \to f$ و f بحيث f شاملة ، تفي بأحد الشروط التالية:

g (*ii*) R وf هي Γ -N-GSCP الحافظة على التبادلية القوية المعممة وباختصار G (*ii*) $P \in \Gamma$ على R (*ii*) $g \in f$ هي R - R الحافظة على التبادلية القوية المعممة المضادة وباختصار Γ -N-GSCP على R. فانه $f(x) = \lambda^{-1} \alpha x$ الحافظة على التبادلية القوية المعممة المضادة وباختصار $f(x) = \lambda^{-1} \alpha x$ - $\chi = \chi$ و $f(x) = \lambda^{-1} \alpha x + \chi_2(x)$ بحيث من الشكل $f(x) = \lambda \alpha x + \xi(x)$ عندما يتم استيفاء الشرط $f(x) = \lambda \alpha x + \chi_2(x)$ عندما يتم استيفاء الشرط $f(x) = \chi \in R$

^{*}Email[:] ahmedabasabad9@gmail.com

1. Introduction and Preliminaries

In 1964 the concept of a Γ -ring first introduced by Nobusawa [1]. In 1966 this Γ -ring is generalized by Barnes [2]. Let *R* and Γ be additive abelian groups, if there exists a mapping $R \times \Gamma \times R \rightarrow R$, such that $(x, \alpha, y) \rightarrow x\alpha y$ which satisfies the conditions

(i) $\in R$, (ii) $(x + y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)z = x\alpha z + x\beta z$, $x\alpha(y + z) = x\alpha y + x\alpha z$, (iii) $(x\alpha y)\beta z = x\alpha(y\beta z)$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

Then R is called a Γ -ring. Let R be a Γ -ring, an additive subgroup A of R is called a right (left) ideal of R if $A\Gamma R \subset A$ ($R\Gamma A \subset A$). If A is both a right and a left ideal, then we say A is an ideal of R. A Γ -ring R is said to be prime if $x\Gamma R\Gamma y = (0)$ with x, $y \in R$, implies x = 0 or y = 0and semiprime if $x\Gamma R\Gamma x = (0)$ with $x \in R$ implies x=0. Let R be a Γ -ring and A be a subset of *R*, the subset $Ann_{I}(A) = \{ r \in R: A\alpha r = \langle 0 \rangle \text{ for all } \alpha \in \Gamma \}$ is called a left annihilator of *A*. A right annihilator $Ann_r(A)$ can be defined similarly. If A is a left and right annihilator in R, then Ann(A) denotes its annihilator. Moreover, if = Ann(Ann(A)), then an ideal A of R is closed and the annihilator of any ideal A of R is a closed ideal. The set $Z(R) = \{x \in R : xay = yax \text{ for } xay = yax \}$ all $\alpha \in \Gamma$ and $y \in R$ is called the center of the Γ -ring R [3]. Let R be a Γ -ring and Q the quotient Γ -ring of *R* then a set $C_{\Gamma} = \{g \in Q : g\alpha f = f\alpha g \text{ for all } f \in Q \text{ and } \alpha \in \Gamma\}$ is called the extended centroid of a Γ -ring R [4]. If R is a Γ -ring then $[x, y]_{\alpha} = x\alpha y - y\alpha x$ for all $x, y \in$ *R* and $\alpha \in \Gamma$ is called the commutator of *x* and *y* with respect to $\alpha \in \Gamma$. A mapping *f* of a Γ ring R into itself is said to be commuting if $[f(x), x]_{\alpha} = 0$ for all $x \in R$ and $\alpha \in \Gamma$. A mapping f of a Γ -ring R into itself is said to be centralizing if $[f(x), x]_{\alpha}$ lies in the center of R for every $x \in R$ and $\alpha \in \Gamma$ [5]. The concept that strong commutativity preserving maps of semiprime rings (SCP) was first introduced by Bell and Mason in [6]. In a Γ -ring R, a map $f: R \to R$ is Γ -strong commutativity preserving (Γ -SCP) on a set $S \subseteq R$ if $[f(x), f(y)]_{\alpha} =$ $[x, y]_{\alpha}$ for all $x, y \in S$ and $\alpha \in \Gamma$ [7]. In [8] Hamil and Majeed introduced the concept of a generalized strong (co)commutativity preserving right centralizers on a subset of a Γ -ring. An additive mapping $d: R \to R$ is called a derivation of a Γ -ring R if $d(x, y) = d(x)\alpha y + x\alpha d(y)$ for all $x, y \in R$ and $\alpha \in \Gamma$. Let R be a Γ -ring, an additive mapping $d: R \to R$ is called a semiderivation associated with a map $g: R \to R$, if every $x, y \in R$ and $\alpha \in \Gamma$, then d(x, y) = $d(x)\alpha g(y) + x\alpha d(y) = d(x)\alpha y + g(x)\alpha d(y)$ and d(g(x)) = g(d(x)). Also Γ -ring R is said to be 2-torsion free if 2x = 0, $x \in R$ implies that x = 0 [9]. In this study, assumption the identity.

Let *R* be a Γ -ring additive maps $f, g: R \to R$ then $f(x)\alpha y\beta g(z) = g(x)\alpha y\beta f(z)$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$ (*).

We will extend the results of Bresar and Miers [10] to semiprime Γ -ring. Now, we will present some new definitions and proven results.

Definition 1.1:Let R be a Γ -Ring, two maps $f, g: R \to R$ are said to be Γ -generalized strong commutativity preserving for short; (Γ -GSCP) on a set $S \subseteq R$ if $[f(x), g(y)]_{\alpha} = [x, y]_{\alpha}$ for all $x, y \in S$ and $\alpha \in \Gamma$.

Definition 1.2:Let R be a Γ -Ring, two maps $f, g: R \to R$ are said to be Γ -anti-generalized strong commutativity preserving for short; (Γ -AGSCP) on a set $S \subseteq R$ if $[f(x), g(y)]_{\alpha} = [y, x]_{\alpha}$ for all $x, y \in S$ and $\alpha \in \Gamma$.

Definition 1.3: Let N be a fixed positive integer and R be a Γ - Ring, two maps $f, g: R \to R$ are said to be Γ -N- generalized strong commutativity preserving for short; (Γ -N-GSCP) mapping on a set $S \subseteq R$ if

 $[f(x), g(y^n)]_{\alpha} = [x, y]_{\alpha}$ for all $x, y \in S$ and $\alpha \in \Gamma$.

Definition 1.4: Let N be a fixed positive integer and R be a Γ -Ring, two maps $f, g: R \to R$ are said to be Γ -N- anti–generalized strong commutativity preserving for short; (Γ -N-AGSCP) mapping on a set $S \subseteq R$ if

 $[f(x), g(y^n)]_{\alpha} = [y, x]_{\alpha}$ for all $x, y \in S$ and $\alpha \in \Gamma$.

Definition 1.5: Let *R* be a Γ -ring, A biadditive mapping $B: RxR \to R$ is called a biderivation if $B(x\alpha y, z) = B(x, z)\alpha y + x\alpha B(y, z)$ and $B(x, y\alpha z) = B(x, y)\alpha z + y\alpha B(x, z)$ for all $x, y \in R$ and $\alpha \in \Gamma$.

Definition 1.6: Let *R* be a Γ -ring, an element $x \in R$ is called an idempotent if $\alpha \in \Gamma$ such that $x^2 = x\alpha x = x$.

Theorem 1.7 [11]: Let *R* be a semiprime Γ -ring with extended centroid C_{Γ} and *S* be a set. Suppose that additive maps $f, g: S \to R$, satisfy (*). Then there exist idempotents $\varepsilon_1, \varepsilon_2, \varepsilon_3 \in C_{\Gamma}$ such that $\varepsilon_i \alpha \varepsilon_j = 0$, for $i \neq j$, $\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 1$, $\varepsilon_1 \alpha f(s) = 0$, $\varepsilon_2 \alpha g(s) = 0$ and $\varepsilon_3 \alpha f(s) = \lambda \beta \varepsilon_3 \alpha g(s)$ for all $s \in S, \alpha, \beta \in \Gamma$ and for some invertible $\lambda \in C_{\Gamma}$, where C_{Γ} is the extended centroid of *R*.

Corollary 1.8 [11]: Let *R* be a semiprime Γ -ring and $a, b \in R$ satisfy $a\alpha x\beta b = b\alpha x\beta a$ for all $x \in R$ and $\alpha, \beta \in \Gamma$. Then there exist idempotents $\varepsilon_1, \varepsilon_2, \varepsilon_3 \in C_{\Gamma}$ such that $\varepsilon_i \alpha \varepsilon_j = 0$, for $i \neq j$, $\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 1$, $\varepsilon_1 \alpha a = 0$, $\varepsilon_2 \alpha b = 0$ and $\varepsilon_3 \alpha a = \lambda \beta \varepsilon_3 \alpha b$ for some invertible $\lambda \in C_{\Gamma}$, where C_{Γ} is the extended centroid of *R*.

2. The Main Results

Lemma 2.1: Let *R* be a Γ -ring, and *B*: $RxR \to R$ be a biderivation, then $B(x, y)\beta z\gamma[u, v]_{\alpha} = [x, y]_{\alpha}\beta z\gamma B(u, v)$ for all $x, y, z, u, v \in R$ and $\alpha, \beta, \gamma \in \Gamma$. **Proof:** We compute $B(x\alpha u, y\beta v)$ in two different ways. $B(x\alpha u, y\beta v) = B(x, y\beta v)\alpha u + x\alpha B(u, y\beta v)$ for all $x, y, u, v \in R$ and $\alpha, \beta \in \Gamma$. (2.1)

It follows from (2.1) that

 $B(x\alpha u, y\beta v) = B(x, y)\beta v\alpha u + y\beta B(x, v)\alpha u + x\alpha B(u, y)\beta v + x\alpha y\beta B(u, v)$ Analogously, we obtain $B(x\alpha u, y\beta v) = B(x, y)\beta v\alpha u + y\beta B(x, v)\alpha u + x\alpha B(u, y)\beta v + x\alpha y\beta B(u, v)$

 $B(x\alpha u, y\beta v) = B(x\alpha u, y)\beta v + y\beta B(x\alpha u, v)$ = $B(x, y)\alpha u\beta v + x\alpha B(u, y)\beta v + y\beta B(x, v)\alpha u + y\beta x\alpha B(u, v)$ Comparing $B(x\alpha u, y\beta v)$ in both computations, we arrive at

 $B(x, y)\beta[u, v]_{\alpha} = [x, y]_{\alpha}\beta B(u, v) \text{ for all } x, y, u, v \in R \text{ and } \alpha, \beta \in \Gamma.$ (2.2) Replacing u by $z\gamma u$ and using the relations

 $[z\gamma u, v]_{\alpha} = [z, v]_{\alpha}\gamma u + z\gamma [u, v]_{\alpha} \text{ and } B(z\gamma u, v) = B(z, v)\gamma u + z\gamma B(u, v).$ $B(x, y)\beta([z, v]_{\alpha}\gamma u + z\gamma [u, v]_{\alpha}) = [x, y]_{\alpha}\beta(B(z, v)\gamma u + z\gamma B(u, v))$ $B(x, y)\beta[z, v]_{\alpha}\gamma u + B(x, y)\beta z\gamma [u, v]_{\alpha} = [x, y]_{\alpha}\beta B(z, v)\gamma u + [x, y]_{\alpha}\beta z\gamma B(u, v)$ By (2.2), we get $B(x, y)\beta z\gamma [u, v]_{\alpha} = [x, y]_{\alpha}\beta z\gamma B(u, v) \text{ for all } x, y, z, u, v \in R \text{ and } \alpha, \beta, \gamma \in \Gamma.$

We obtain the assertion of the Lemma.

Theorem 2.2: Let *R* be a semiprime Γ -ring with an extended centroid C_{Γ} , and let $B: RxR \to R$ be a biderivation. Then there exist an idempotent $\varepsilon \in C_{\Gamma}$ and an element $\mu \in C_{\Gamma}$ such that $(1 - \varepsilon)\alpha R \subseteq C_{\Gamma}$ and $\varepsilon\beta B(x, y) = \mu\gamma\varepsilon\beta[x, y]_{\alpha}$ for all $x, y \in R$ and $\alpha, \beta, \gamma \in \Gamma$.

Proof: By Lemma (2.1) $B(x, y)\beta z\gamma[u, v]_{\alpha} = [x, y]_{\alpha}\beta z\gamma B(u, v)$ for all $x, y, z, u, v \in R$ and $\alpha, \beta, \gamma \in \Gamma$. Let $x, y \in R$ and $e = (1 - \varepsilon)$, then $e\alpha y\beta e\alpha x = e\alpha(x\beta e\alpha y) = e\alpha x\beta e\alpha y$. We get $(1 - \varepsilon)\alpha y\beta(1 - \varepsilon)\alpha x = (1 - \varepsilon)\alpha x\beta(1 - \varepsilon)\alpha y$ for all $x, y \in R$ and $\alpha, \beta \in \Gamma$. Then, $(1 - \varepsilon)\alpha R \subseteq C_{\Gamma}$. Now, let S = RxR and define $A: S \to R$ by $A(x, y) = [x, y]_{\alpha}$. Note that the mappings $A, B: S \to R$. By Theorem (1.7), there exist mutually orthogonal idempotents $\varepsilon_1, \varepsilon_2, \varepsilon_3 \in C_{\Gamma}$ with sum 1 such that for some $\lambda \in C_{\Gamma}$, we have, $\varepsilon_1 \beta B(x, y) = 0, \varepsilon_2 \beta [x, y]_{\alpha} = 0$ and $\varepsilon_3 \beta B(x, y) = \lambda \gamma \varepsilon_3 \beta [x, y]_{\alpha}$ for all $x, y \in R$ and $\alpha, \beta, \gamma \in \Gamma$. We set $\varepsilon = \varepsilon_3 + \varepsilon_1$, $\mu = \lambda \gamma \varepsilon_3$,

and note that ε and μ have desired properties.

Corollary 2.3: Let *R* be a semiprime Γ -ring with extended centroid C_{Γ} , and let $f: R \to R$ be a commuting additive mapping. Then there exists $\lambda \in C_{\Gamma}$ such that $f(x) = \lambda \alpha x + \xi(x)$ for all $x \in R$ and $\alpha \in \Gamma$ where an additive mapping $\xi: R \to C_{\Gamma}$.

Proof: Linearizing $[f(x), x]_{\alpha} = 0$ for all $x \in R$ and $\alpha \in \Gamma$, we obtain $[f(x), y]_{\alpha} = [x, f(y)]_{\alpha}$. Hence, we see that the mapping $(x, y) \rightarrow [f(x), y]_{\alpha}$ is a biderivation. By Theorem (2.2) there exists an idempotent $\varepsilon \in C_{\Gamma}$ and an element $\mu \in C_{\Gamma}$ such that $(1 - \varepsilon)\alpha R \subseteq C_{\Gamma}$, and $\varepsilon \alpha [f(x), y]_{\alpha} = \mu \gamma \varepsilon \alpha [x, y]_{\alpha}$ holds for all $x, y \in R$ and $\alpha, \gamma \in \Gamma$. We have $\varepsilon \alpha f(x)\alpha y - \varepsilon \alpha y \alpha f(x) = \mu \gamma \varepsilon \alpha x \alpha y - \mu \gamma \varepsilon \alpha y \alpha x$ $\varepsilon \alpha f(x) \alpha y - \mu \gamma \varepsilon \alpha x \alpha y = \varepsilon \alpha y \alpha f(x) - \mu \gamma \varepsilon \alpha y \alpha x$ $(\varepsilon \alpha f(x) - \mu \gamma \varepsilon \alpha x) \alpha y - y \alpha (\varepsilon \alpha f(x) - \mu \gamma \varepsilon \alpha x) = 0$ Thus, $\varepsilon \alpha f(x) - \mu \gamma \varepsilon \alpha x \in C_{\Gamma}$. Now, let $\lambda = \mu \gamma \varepsilon$ and define a mapping ξ by $\xi(x) = (\varepsilon \alpha f(x) - \lambda \alpha x) + (1 - \varepsilon) \alpha f(x)$. Note that ξ maps in C_{Γ} and that $\xi(x) + \lambda \alpha x = \varepsilon \alpha f(x) + 1\alpha f(x) - \varepsilon \alpha f(x)$, then $f(x) = \lambda \alpha x + \xi(x)$ holds for every $x \in R$ and $\alpha \in \Gamma$.

Proposition 2.4: Let *R* be a 2-torsion free semiprime Γ -ring with extended centroid C_{Γ} , and *S* be a subring of *R*, if $f: R \to R$ a centralizing additive mapping of *S*, then *f* commuting of *S*.

Proof: A Linearizing of $[f(x), x]_{\alpha} \in Z$, we obtain particular, $[f(x), x^2]_{\alpha} + [f(x), y]_{\alpha} + [f(y), x]_{\alpha} \in Z$ for all $x \in R$ and $\alpha \in \Gamma$ In $[f(x^2), x]_{\alpha} \in \mathbb{Z}$. Since $[f(x), x]_{\alpha} \in \mathbb{Z}$, we have $[f(x), x^2]_{\alpha} = 2[f(x), x]_{\alpha} \alpha x$. So, $(2.3)2[f(x), x]_{\alpha}\alpha x + [f(x^2), x]_{\alpha} \in Z \text{ for all } x \in S \text{ and } \alpha \in \Gamma.$ By assumption, $[f(x^2), x^2]_{\alpha} \in Z$ for all $x \in S$ and $\alpha \in \Gamma$. That is Now for all $x \in S$ and $\alpha \in \Gamma$. $(2.4)[f(x^2), x]_{\alpha}\alpha x + x\alpha[f(x^2), x]_{\alpha} \in \mathbb{Z}$ fix $x \in U$ and let $z = [f(x), x]_{\alpha} \in Z$, $u = [f(x^2), x]_{\alpha}$. We must show that z = 0. By (2.3) we have $0 = [f(x), 2z\alpha x + u]_{\alpha} = [f(x), 2z\alpha x]_{\alpha} + [f(x), u]_{\alpha} = 2z\alpha [f(x), x]_{\alpha} + [f(x), u]_{\alpha} =$ $2z^2 + [f(x), u]_{\alpha}$. So, $[f(x), u]_{\alpha} = -2z^2$ for all $x \in U$ and $\alpha \in \Gamma$. (2.5)According to (2.4). We have $0 = [f(x), u\alpha x + x\alpha u]_{\alpha} = [f(x), u\alpha x]_{\alpha} + [f(x), x\alpha u]_{\alpha} =$ $[f(x), u]_{\alpha} \alpha x + u\alpha [f(x), x]_{\alpha} + [f(x), x]_{\alpha} \alpha u + x\alpha [f(x), u]_{\alpha}$, applying (2.5) $-2z^2\alpha x + u\alpha z + z\alpha u - 2x\alpha z^2 = 0$ we then get $-4z^2\alpha x + 2z\alpha u = 0$. So, $z\alpha u = 2z^2\alpha x$. Multiplying (2.5) by z and using the last relation we obtain $-2z^3 = [f(x), 2z^2\alpha x]_{\alpha} = 2z^3$. As result $z^3 = 0$. Since the center of a semiprime Γ -ring contains no nonzero nilpotents, we conclude that $z = [f(x), x]_{\alpha} = 0$. then f commuting.

Corollary 2.5: Let *R* be a 2-torsion free semiprime Γ -ring with extended centroid C_{Γ} , and let $f: R \to R$ be a centralizing additive mapping. Then there exists $\lambda \in C_{\Gamma}$ such that $f(x) = \lambda \alpha x + \xi(x)$ for all $x \in R$ and $\alpha \in \Gamma$ where an additive mapping $\xi: R \to C_{\Gamma}$.

Proof: Combining Proposition (2.4) and Corollary (2.3), we get $f(x) = \lambda \alpha x + \xi(x)$ for all $x \in R$ and $\alpha \in \Gamma$.

Corollary 2.6: Let *R* be a semiprime Γ -ring with extended centroid C_{Γ} , and let $f: R \to R$ be a centralizing additive mapping. If either *R* has a 2-torsion free or *f* is commuting on *R*. Then there exists $\lambda \in C_{\Gamma}$ such that $f(x) = \lambda \alpha x + \xi(x)$ for all $x \in R$ and $\alpha \in \Gamma$ where an additive mapping $\xi: R \to C_{\Gamma}$.

We begin with technical lemma.

Lemma 2.7: Let *A* be the ideal of Γ -ring *R* generated by all commutators in *R*. Suppose that $(\lambda_0 \gamma \mu_0 - 1) \alpha A = 0$ for some $\lambda_0, \mu_0 \in C_{\Gamma}$ and $\alpha, \gamma \in \Gamma$. Then there exists an invertible element $\lambda \in C_{\Gamma}$ such that $(\lambda - \lambda_0) \alpha R \subseteq C_{\Gamma}$ and $(\lambda^{-1} - \mu_0) \alpha R \subseteq C_{\Gamma}$. Moreover, if $\lambda_0 = \mu_0$, then $\lambda = \lambda^{-1}$.

Proof: Since Ann(A) be a closed ideal then there exists an idempotent $\varepsilon \in C_{\Gamma}$ such that $Ann(A) = \varepsilon \alpha R = \varepsilon \alpha Q \cap R$. Define $\lambda, \mu \in C_{\Gamma}$ by $\lambda = \lambda_0 \alpha (1 - \varepsilon) + \varepsilon$, $\mu = \mu_0 \alpha (1 - \varepsilon) + \varepsilon$. Whence $(\lambda \gamma \mu - 1) = (\lambda_0 \gamma \mu_0 - 1) \alpha (1 - \varepsilon)$ which yields $(\lambda \gamma \mu - 1) \alpha (A \oplus Ann(A)) = 0$, for some $\lambda_0, \mu_0 \in C_{\Gamma}$ and $\alpha, \gamma \in \Gamma$ $(\lambda_0 \gamma \mu_0 - 1) \alpha A = 0$ and $(1 - \varepsilon) \alpha Ann(A) = 0$. Since $A \oplus Ann(A)$ is an essential ideal of Γ -ring R it follows that $\lambda \gamma \mu - 1 = 0$, that is, $\mu = \lambda^{-1}$. Clearly, $\lambda_0 = \mu_0$ implies $\lambda = \mu = \lambda^{-1}$. We claim that $\varepsilon \gamma R \subseteq C_{\Gamma}$. Indeed, there exists an essential ideal E such that $\varepsilon \alpha E \subseteq R$. So, $\varepsilon \alpha E \subseteq \varepsilon \alpha Q \cap R = Ann(A)$, that is, $A\gamma \varepsilon \alpha E = 0$ which gives $\varepsilon \gamma A = 0$; thus, $[\varepsilon \gamma R, R]_{\alpha} = \varepsilon \gamma [R, R]_{\alpha} = 0$ which shows that $\varepsilon \gamma R \subseteq C_{\Gamma}$. Therefore, as $\lambda - \lambda_0 = (1 - \lambda_0) \alpha \varepsilon$, we see that $(\lambda - \lambda_0) \alpha R \subseteq C_{\Gamma}$. Similarly, we have $(\lambda^{-1} - \mu_0) \alpha R \subseteq C_{\Gamma}$.

Theorem 2.8: Let *R* be a semiprime Γ -ring with extended centroid C_{Γ} . Suppose that an additive map $f: R \to R$ is Γ -SCP. Then $f(x) = \lambda \alpha x + \xi(x)$ where $\lambda \in C_{\Gamma}$, $\lambda^2 = 1$ and an additive mapping $\xi: R \to C_{\Gamma}$.

Proof: Our first goal is to prove that f is commuting. For $x, y \in R$ and $\alpha, \beta \in \Gamma$, we have $[f(y^2), [y, x)]_{\alpha}]_{\beta} = [f(y^2), [f(y), f(x)]_{\alpha}]_{\beta}$ $= [f(x), [f(y), f(y^2)]_{\alpha}]_{\beta} + [f(y), [f(y^2), f(x)]_{\alpha}]_{\beta}$, by (Γ -SCP) map $= [f(x), [y, y^2]_{\alpha}]_{\beta} + [f(y), [y^2, x]_{\alpha}]_{\beta} = [f(y), [y^2, x]_{\alpha}]_{\beta}$. Thus, $[f(y^2), [y, x]_{\alpha}]_{\beta} = [f(y), [y^2, x]_{\alpha}]_{\beta}$ for all $x, y \in R$ and $\alpha, \beta \in \Gamma$ (2.6) Replacing x by $y\beta x$ in both sides (2.6), we get $[f(y^2), [y, y\beta x]_{\alpha}]_{\beta} = [f(y^2), y\beta [y, x]_{\alpha}]_{\beta} = [f(y^2), y]_{\beta}\beta [y, x]_{\alpha} + y\beta [f(y^2), [y, x]_{\alpha}]_{\beta}$. And $[f(y), [y^2, y\beta x]_{\alpha}]_{\beta} = [f(y), y\beta [y^2, x]_{\alpha}]_{\beta} = [f(y), y]_{\beta}\beta [y^2, x]_{\alpha} + y\beta [f(y), [y^2, x]_{\alpha}]_{\beta}$. Comparing both results and by using (2.6), we arrive at $[f(y^2), y]_{\beta}\beta [y, x]_{\alpha} = [f(y), y]_{\beta}\beta [y^2, x]_{\alpha}$ for all $x, y \in R$ and $\alpha, \beta \in \Gamma$ (2.7) Replacing x by $x\alpha z, z \in R$ in (2.7), $[f(y^2), y]_{\beta}\beta [y, x\alpha z]_{\alpha} = [f(y), y]_{\beta}\beta [y^2, x\alpha z]_{\alpha}$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$. We obtain $[f(y^2), y]_{\beta}\beta x \alpha [y, z]_{\alpha} = [f(y), y]_{\beta}\beta x \alpha [y^2, z]_{\alpha}$

 $\begin{aligned} & for \ all \ x, y, z \in R \ and \ \alpha, \beta \in \Gamma \end{aligned} (2.8) \\ \text{Replacing } y \ \text{by } f(r), \ r \in R \ \text{in (2.6), thus we obtain} \\ & [f(f(r)^2), f(r)]_{\beta} \beta x \alpha [f(r), z]_{\alpha} = [f(f(r)), f(r)]_{\beta} \beta x \alpha [f(r)^2, z]_{\alpha} \\ \text{According to } (\Gamma \text{-SCP}) \ \text{map, we get} \\ & [f(r)^2, r]_{\beta} \beta x \alpha [f(r), z]_{\alpha} = [f(r), r]_{\beta} \beta x \alpha [f(r)^2, z]_{\alpha} \end{aligned}$

for all $x, z, r \in R$ and $\alpha, \beta \in \Gamma$ (2.9) Now fix $r \in R$ and we show that $[f(r), r]_{\alpha} = 0$. As a special case of (2.9), we have

$$[f(r)^{2}, r]_{\beta}\beta x \alpha [f(r), r]_{\alpha} = [f(r), r]_{\beta}\beta x \alpha [f(r)^{2}, r]_{\alpha}$$

for all $x, r \in \mathbb{R}$ and $\alpha, \beta \in \Gamma$ (2.10)

Applying Corollary (1.8), we see that there are mutually orthogonal idempotents $\varepsilon_1, \varepsilon_2, \varepsilon_3 \in C_{\Gamma}$ such that $\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 1$, $\varepsilon_1 \beta [f(r), r]_{\alpha} = 0$, $\varepsilon_2 \beta [f(r)^2, r]_{\alpha} = 0$, $\varepsilon_3 \beta [f(r)^2, r]_{\alpha} = v \alpha \varepsilon_3 \beta [f(r), r]_{\alpha}$, for some invertible $v \in C_{\Gamma}$. By (2.9) we thus obtain

$$\begin{split} [f(r),r]_{\beta}\beta x\alpha[f(r)^{2},z]_{\alpha} &= (\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3})\beta[f(r),r]_{\beta}\beta x\alpha[f(r)^{2},z]_{\alpha} \\ &= (\varepsilon_{2}+\varepsilon_{3})\beta[f(r),r]_{\beta}\beta x\alpha[f(r)^{2},z]_{\alpha} \\ &= (\varepsilon_{2}+\varepsilon_{3})\beta[f(r)^{2},r]_{\beta}\beta x\alpha[f(r),z]_{\alpha} \\ &= (\varepsilon_{3})\beta[f(r)^{2},r]_{\beta}\beta x\alpha[f(r),z]_{\alpha} \\ &= v\alpha\varepsilon_{3}\beta[f(r),r]_{\beta}\beta x\alpha[f(r),z]_{\alpha} \end{split}$$

Setting $\mu = v\alpha\varepsilon_3$, we thus have

 $[f(r), r]_{\alpha}\beta x\alpha[f(r)^{2} - \mu\beta f(r), z] = 0 \text{ for all } x, z \in R \text{ and } \alpha, \beta \in \Gamma.$ That is, $[f(r)^{2} - \mu\beta f(r), R]_{\alpha} \subseteq I$, where $I = \{q \in Q : [f(r), r]_{\alpha}Rq = 0\}$. Of course, I is a right ideal of Q. Now, for any $z \in R$, we have $\mu\beta[r, z]_{\alpha} - f(r)\beta[r, z]_{\alpha} - [r, z]_{\alpha}\beta f(r)$ $= \mu\beta[f(r), f(z)]_{\alpha} - f(r)\beta[f(r), f(z)]_{\alpha} - [f(r), f(z)]_{\alpha}\beta f(r)$ $= [\mu\beta f(r), f(z)]_{\alpha} - [f(r)^{2}, f(z)]_{\alpha} = [\mu\beta f(r) - f(r)^{2}, f(z)]_{\alpha}$ which shows that $\mu\beta[r, z]_{\alpha} - f(r)\beta[r, z]_{\alpha} - [r, z]_{\alpha}\beta f(r) \in I.$ for all $r, z \in R$ and $\alpha, \beta \in \Gamma.$ (2.11) Replacing z by $z\alpha r$ in (2.11), we get

$$\mu\beta[r,z]_{\alpha}\alpha r - f(r)\beta[r,z]_{\alpha}\alpha r - [r,z]_{\alpha}\alpha r\beta f(r) \in I.$$

On the other hand, since I is a right ideal, we have

$$(\mu\beta[r,z]_{\alpha} - f(r)\beta[r,z]_{\alpha} - [r,z]_{\alpha}\beta f(r))\alpha r \in I.$$

Comparing the last two relations we get $[r, z]_{\alpha}\beta[f(r), r]_{\alpha} \in I$ for all $r, z \in R$ and $\alpha, \beta \in \Gamma$. That is,

 $[f(r), r]_{\alpha}\beta R\beta[r, z]_{\alpha}\beta[f(r), r]_{\alpha} = 0 \text{ for all } r, z \in R \text{ and } \alpha, \beta \in \Gamma.$ (2.12) Replacing z by $f(r)\beta z$ and using $[r, f(r)\beta z]_{\alpha} = [r, f(r)]_{\alpha}\beta z + f(r)\beta[r, z]_{\alpha}$ it follows at once that $[f(r), r]_{\alpha}\beta R\beta[r, f(r)]_{\alpha}\beta R\beta[f(r), r]_{\alpha} = 0.$

Since *R* is semiprime Γ -ring it follows that $[f(r), r]_{\alpha} = 0$ for all $r \in R$ and $\alpha \in \Gamma$. Thus we proved that *f* is commuting.

According to Corollary (2.3), we have $f(x) = \lambda_0 \alpha x + \xi_0(x)$, $x \in R$ and $\in \Gamma$, where $\lambda_0 \in C_{\Gamma}$ and ξ_0 is an additive map of R into C_{Γ} . Therefore, the relation $[f(x), f(y)]_{\alpha} = [x, y]_{\alpha}$ can be rewritten as $(\lambda^2_0 - 1)\alpha[x, y]_{\alpha} = 0$, which shows that $(\lambda^2_0 - 1)\alpha A = 0$. By the Lemma (2.7) there is $\lambda \in C_{\Gamma}$ such that $\lambda^2 = 1$ and $(\lambda - \lambda_0)\alpha R \subseteq C_{\Gamma}$. For any $x \in R$ and $\alpha \in \Gamma$, we thus have $f(x) = \lambda_0 \alpha x + \xi_0(x) = \lambda \alpha x + (\lambda_0 - \lambda)\alpha x + \xi_0(x) = \lambda \alpha x + \xi(x)$ where $\xi(x) = (\lambda_0 - \lambda)\alpha x + \xi_0(x) \in C_{\Gamma}$, This proves the theorem.

Assuming that f is onto then even a stronger result can be easily obtained.

Theorem 2.9: Let *R* be a semiprime Γ -ring with extended centroid C_{Γ} . Suppose that an additive maps $f, g: R \to R$ are Γ -GSCP. If f is onto, then there exists an invertible element $\lambda \in C_{\Gamma}$ and an additive maps $\xi, \eta: R \to C_{\Gamma}$. Such that $g(x) = \lambda \alpha x + \xi(x), f(x) = \lambda^{-1} \alpha x + \eta(x)$ for all $x \in R$ and $\alpha \in \Gamma$.

Proof: Define a biadditive map $B: R \times R \to R$ by $B(x, y) = [x, g(y)]_{\alpha}$. Clearly, *B* is a derivation in the first argument. Pick $x_0 \in R$; as *f* is onto, we have $x_0 = f(x_1)$ for some $x_1 \in R$. Thus $B(x_0, y) = [f(x_1), g(y)]_{\alpha} = [x_1, y]_{\alpha}$. This shows that *B* is a biderivation. By Theorem (2.2) there are $\varepsilon, \mu \in C_{\Gamma}$, ε an idempotent, such that $(1 - \varepsilon)\alpha R \subseteq C_{\Gamma}$, $\varepsilon\alpha[x, g(y)]_{\alpha} = \varepsilon\alpha\mu\beta[x, y]_{\alpha}$, for all $x, y \in R$ and $\alpha, \beta \in \Gamma$. Thus,

 $[R, \varepsilon \alpha g(y) - \varepsilon \alpha \mu \beta y]_{\alpha} = 0 \text{ and } \varepsilon \alpha g(y) - \varepsilon \alpha \mu \beta y \in C_{\Gamma} \text{ for all } y \in R \text{ and } \alpha, \beta \in \Gamma. \text{ Whence } g(y) - \varepsilon \alpha \mu \beta y = (\varepsilon \alpha g(y) - \varepsilon \alpha \mu \beta y) + (1 - \varepsilon) \alpha g(y) \in C_{\Gamma},$

and so $g(y) = \lambda_0 \alpha y + \xi_0(y)$ where $\lambda_0 = \varepsilon \alpha \mu \in C_{\Gamma}$,

 $\xi_0(y) = g(y) - \varepsilon \alpha \mu \beta y \in C_{\Gamma}$. By (Γ -GSCP) map it now follows that $[x, f(x)]_{\alpha} = [f(x), g(f(x))]_{\alpha} = 0$ for all $x \in R$ and $\alpha \in \Gamma$; that is f is commuting. Therefore, f is of the form $f(x) = \mu_0 \alpha x + \eta_0(x)$, $\mu_0 \in C_{\Gamma}, \eta_0(x) \in C_{\Gamma}$.

By $[f(x), g(y)]_{\alpha} = [x, y]_{\alpha}$ it now follows at once that $(\lambda_0 \beta \mu_0 - 1)\alpha A = 0$.

By the Lemma (2.7), there is an invertible $\lambda \in C_{\Gamma}$ such that $(\lambda - \lambda_0)\alpha R \subseteq C_{\Gamma}$, $(\lambda^{-1} - \mu_0)\alpha R \subseteq C_{\Gamma}$. Whence

 $f(x) = \mu_0 \alpha x + \eta_0(x) = \lambda^{-1} \alpha x + (\mu_0 - \lambda^{-1}) \alpha x + \eta_0(x) = \lambda^{-1} \alpha x + \eta(x)$ $g(x) = \lambda_0 \alpha x + \xi_0(x) = \lambda \alpha x + (\lambda_0 - \lambda) \alpha x + \xi_0(x) = \lambda \alpha x + \xi(x)$ where $\eta(x) = (\mu_0 - \lambda^{-1}) \alpha x + \eta_0(x) \in C_{\Gamma}$, $\xi(x) = (\lambda_0 - \lambda) \alpha x + \xi_0(x) \in C_{\Gamma}$.

Theorem 2.10: Let *R* be a semiprime Γ -ring with extended centroid C_{Γ} , N be a fixed positive integer and suppose that an additive maps *f* and *g*: $R \rightarrow R$ such that *f* is onto, if one of these conditions is fulfilled:

(i) f and g belong to Γ -N-GSCP on R.

(ii) f and g belong to Γ -N-AGSCP on R.

Then there exists an element $\lambda \in C_{\Gamma}$ and additive maps $\xi, \eta_1 and \eta_2 : R \to C_{\Gamma}$ such that $g(x^n) = \lambda \alpha x + \xi(x)$ and $f(x) = \lambda^{-1} \alpha x + \eta_1(x)$ when condition (*i*) is satisfied, and $f(x) = -\lambda^{-1} \alpha x + \eta_2(x)$ when condition (*ii*) is satisfied for all $x \in R$ and $\alpha \in \Gamma$.

Proof: Suppose that f and g be Γ -N-GSCP on R.

Define a biadditive map $B: R \times R \rightarrow R$ by

 $B(x, y) = [x, g(y^n)]_{\alpha} \text{ for all } x, y \in R \text{ and } \alpha \in \Gamma.$ (2.13)

It is clear that *B* is a derivation in the first argument. Pick $x_0 \in R$; as *f* is onto, we have $x_0 = f(x_1)$ for some $x_1 \in R$.

Thus $B(x_0, y) = [f(x_1), g(y^n)]_{\alpha} = [x_1, y]_{\alpha}$, this shows that B is a derivation in the second argument, so B is a biderivation on R.

By Theorem (2.2), there are $\varepsilon, \mu \in C_{\Gamma}$, ε an idempotent, such that $(1-\varepsilon)\alpha R \subseteq C_{\Gamma}$ and $\varepsilon\beta[x,g(y^n)]_{\alpha} = \varepsilon\beta\mu\gamma[x,y]_{\alpha}$ for all $x,y \in R$ and $\alpha,\beta,\gamma \in \Gamma$. Thus $[R, \varepsilon \alpha g(y^n) - \varepsilon \beta \mu \gamma y] = 0$ and so $(\varepsilon \alpha g(y^n) - \varepsilon \beta \mu \gamma y) \in R$ for all $y \in R$ and $\alpha, \beta, \gamma \in \Gamma$. When $g(y^n) - \varepsilon \beta \mu \gamma y = (\varepsilon \alpha g(y^n) - \varepsilon \beta \mu \gamma y) + (1 - \varepsilon) g(y^n) \in C_{\Gamma}$ for all $y \in R$ and $\alpha, \beta, \gamma \in \Gamma$. (2.14)So we have $g(y^n) = \lambda_0 \alpha y + \xi_0(y)$ where $\lambda_0 = \varepsilon \beta \mu$ and $\xi_0(y) = g(y^n) - \varepsilon \beta \mu \gamma y \in C_{\Gamma}$ for all $y \in R$ and $\alpha, \beta, \gamma \in \Gamma$. (2.15)By condition (i), we have $[x, f(x)]_{\alpha} = [f(x), g(f(x^n))]_{\alpha}$ for all $x, y \in R$ and $\alpha \in \Gamma$. (2.16)From (2.15) and (2.16), we get $[x, f(x)]_{\alpha} = [f(x), \lambda_0 \alpha f(x) + \xi_0(f(x))]_{\alpha} = 0 \text{ for all } x \in R \text{ and } \alpha \in \Gamma.$ That is f is commuting on R. So, by Corollary (2.6), f is of the form $f(x) = \mu_0 \alpha x + \eta_0(x)$, where μ_0 and $\eta_0(x) \in C_{\Gamma}$ for all $x \in R$ and $\alpha \in \Gamma$. Substituting (2.15) and (2.16) in condition (i), we get $(\lambda_0 \gamma \mu_0 - 1)\beta [x, y]_{\alpha} = 0$ for all $x, y \in R$ and $\alpha, \beta, \gamma \in \Gamma$. (2.17)It follows that $(\lambda_0 \gamma \mu_0 - 1) \alpha A = 0$ where A be the ideal of R generated by all commutators in *R*, By Lemma (2.7), there is an invertible element $\lambda \in C_{\Gamma}$ such that $(\lambda - \lambda_0)\alpha R \subseteq C_{\Gamma}$ and $(\lambda^{-1} - \mu_0) \alpha R \subseteq C_{\Gamma}$, when $f(x) = \mu_0 \alpha x + \eta_0(x) = \lambda^{-1} \alpha x + (\mu_0 - \lambda^{-1}) \alpha x + \eta_0(x) = \lambda^{-1} \alpha x + \eta_1(x)$ $g(x^n) = \lambda_0 \alpha y + \xi_0(x) = \lambda \alpha x + (\lambda_0 - \lambda) \alpha x + \xi_0(x) = \lambda \alpha x + \xi(x).$ $\eta_1(x) = (\mu_0 - \lambda^{-1})\alpha x + \eta_0(x) \in \mathcal{C}_{\Gamma}, \xi(x) = (\lambda_0 - \lambda)\alpha x + \xi_0(x) \in \mathcal{C}_{\Gamma}.$ Where Suppose that f and g be Γ -N-AGSCP on R. Define a biadditive map $B: R \times R \rightarrow R$ by $B(x, y) = [g(y^n), x]_{\alpha} \text{ for all } x, y \in R \text{ and } \alpha \in \Gamma.$ By similar argument then used to prove the theorem when condition (i) is satisfied, we can get $g(x^n) = \lambda_0 \alpha y + \xi_0(x)$ where $\lambda_0 \in C_{\Gamma}$, and $\xi_0(y) \in C_{\Gamma}$ for all $y \in R$, and $f(x) = \mu_0 \alpha x + \xi_0(x)$ $\eta_0(x)$ Where $\mu_0 \in C$, $\eta_0(x) \in C_{\Gamma}$ for all $x \in R$. Thus from condition (*ii*), we get $(\lambda_0 \gamma \mu_0 - 1)\beta [x, y]_{\alpha} = 0$ for all $y \in R$ and $\alpha, \beta, \gamma \in \Gamma$. By Lemma (2.7), there is an invertible element $\lambda \in C_{\Gamma}$ such that $(\lambda - \lambda_0)\alpha R \subseteq C_{\Gamma}$ and $(\lambda^{-1} + \mu_0)\alpha R \subseteq C_{\Gamma}$, when $f(x) = \mu_0 \alpha x + \eta_0(x) = -\lambda^{-1} \alpha x + (\mu_0 + \lambda^{-1}) \alpha x + \eta_0(x) = -\lambda^{-1} \alpha x + \eta_2(x)$ $g(x^n) = \lambda_0 \alpha x + \xi_0(x) = \lambda \alpha x + (\lambda_0 - \lambda) \alpha x + \xi_0(x) = \lambda \alpha x + \xi(x).$ Where $\eta_2(x) = (\mu_0 + \lambda^{-1})\alpha x + \eta_0(x) \in C_{\Gamma}$ and $\xi(x) = (\lambda_0 - \lambda)\alpha x + \xi_0(x) \in C_{\Gamma}$.

3. Applications

Lemma 3.1: Let *R* be a semiprime Γ -ring and $a, b \in R$ such that $a\alpha x\beta b = b\alpha x\beta a$ for all $x \in R$ and $\alpha, \beta \in \Gamma$. If $a \neq 0$, then $a = \lambda \alpha b$ for some λ in the extended centroid C_{Γ} of *R*.

Proof: Thus, elements *a* and *b* satisfy the requirements of Corollary (1.8). Therefore, there exist mutually orthogonal idempotents $\varepsilon_1, \varepsilon_2, \varepsilon_3 \in C_{\Gamma}$ such that for every $x \in R$ we have $\varepsilon_1 \alpha g(x) = 0$, $\varepsilon_2 \alpha f(x) = 0$ and $\varepsilon_3 \alpha g(x) = \lambda \beta \varepsilon_3 \alpha f(x)$ where an invertible element $\lambda \in C_{\Gamma}$. Let $\varepsilon_1 = 0$, $\varepsilon_2 = 0$, $\varepsilon_3 = 1$, note that $\varepsilon_1, \varepsilon_2, \varepsilon_3 \in C_{\Gamma}$ satisfies the assertion of the Corollary.

Lemma 3.2: Let *R* be a semiprime Γ -ring. If functions $f: R \to R$ and $g: R \to R$ are such that $(x)\alpha y\beta g(z) = g(x)\alpha y\beta f(z)$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$, if $f \neq 0$, then there exists λ in the extended centroid C_{Γ} of *R* such that $g(x) = \lambda \alpha f(x)$ for all $x \in R$ and $\alpha \in \Gamma$.

Proof: By Theorem (1.7), there exist mutually orthogonal idempotents $\varepsilon_1, \varepsilon_2, \varepsilon_3 \in C_{\Gamma}$ such that for every $x \in R$ we have $\varepsilon_1 \alpha g(x) = 0$, $\varepsilon_2 \alpha f(x) = 0$ and $\varepsilon_3 \alpha g(x) = \lambda \beta \varepsilon_3 \alpha f(x)$ where λ is an invertible element in C_{Γ} . Let $\varepsilon_1 = 0, \varepsilon_2 = 0, \varepsilon_3 = 1$, note that $\varepsilon_1, \varepsilon_2, \varepsilon_3 \in C_{\Gamma}$ satisfies assertion of the theorem.

Theorem 3.3: Let *R* be a semiprime Γ -ring. If *f* is a semiderivation of *R* (with associated function) then either *f* is a derivation or $f(x) = \lambda \alpha (1 - g)(x)$ for all $x \in R$ and $\alpha \in \Gamma$, $\lambda \in C_{\Gamma}$ where C_{Γ} the extended centroid of *R* and *g* is an endomorphism.

Proof: We may assume that $f \neq 0$. In this state, g is a Γ -ring endomorphism. Note that $f(x\alpha y) = f(x)\alpha g(y) + x\alpha f(y) = f(x)\alpha y + g(x)\alpha f(y)$ can be written in the form $(1 - g)(x)\alpha f(y) = f(x)\alpha(1 - g)(y)$ for all $x, y \in R$ and $\alpha \in \Gamma$. In particular, $(1 - g)(x)\alpha f(y\beta z) = f(x)\alpha(1 - g)(y\beta z)$ for all $x, y, z \in R$, and $\alpha, \beta \in \Gamma$. But on the other hand, $(1 - g)(x)\alpha f(y\beta z) = (1 - g)(x)\alpha f(y)\beta g(z) + (1 - g)(x)\alpha y\beta f(z),$

and

 $f(x)(1-g)(y\beta z) = f(x)\alpha(1-g)(y)\beta g(z) + f(x)\alpha y\beta(1-g)(z).$ Comparing the last two relations and applying $(1-g)(x)\alpha f(y) = f(x)\alpha(1-g)(y).$ We get $(1-g)(x)\alpha y\beta f(z) = f(x)\alpha y\beta(1-g)(z)$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

If g = 1 then f is a derivation; therefore, we may ssume that $1 - g \neq 0$ and so the assertion of the theorem follows immediately from the lemma (3.2), i.e., $(x) = \lambda \alpha f(x)$ for all $x \in R$ and $\alpha \in \Gamma$. Replacing g(x) by f(x) and f(x) by (1 - g)(x) We get $f(x) = \lambda \alpha (1 - g)(x)$ for all $x \in R$ and $\alpha \in \Gamma$.

Corollary 3.4: Let *R* be a semiprime Γ -ring, and let $f: R \to R$ be additive mapping. If *g* a Γ -ring endomorphism of *R*. Then there exists $\lambda \in C_{\Gamma}$ where C_{Γ} the extended centroid of *R* and an additive mapping $\xi: R \to C_{\Gamma}$ such that $f(x) = \lambda \alpha x + \xi(x)$ for all $x \in R$ and $\alpha \in \Gamma$.

Proof: Application (*), the identity

 $f(x)\alpha x\beta g(x) = g(x)\alpha x\beta f(x)$ for all $x \in R$ and $\alpha, \beta \in \Gamma$.

By Theorem (3.3), every semi-derivation f of a prime Γ -ring R is either a derivation, or it is of the form

 $f(x) = \lambda \alpha (1 - g)(x)$, where $\lambda \in C_{\Gamma}$ and g a Γ -ring endomorphism of R. We get

$$f(x) = \lambda \alpha (1 - g)(x) = \lambda \alpha x + \lambda \alpha g(x) = \lambda \alpha x + \xi(x)$$

where $\xi(x) = \lambda \alpha g(x)$. Then

$$f(x) = \lambda \alpha x + \xi(x)$$
 for all $x \in R$ and $\alpha \in \Gamma$.

References

- [1] N. Nobusawa, "On A Generalization of The Ring Theory", Osaka J.Math.; vol. 1, pp. 81–89, 1964.
- [2] W. E. Barnes, "On The Γ-rings of Nobusawa" *Pacific J. Math.*; vol. 18, no. 3, pp. 411–422, 1966.
- [3] M. A. Öztürk, M. Sapanci, M. Soytürk, and K. H. Kim, "Symmetric Bi-Derivation on Prime Gamma Rings" *Scientiae Mathematicae*; vol. 3, no. 2, pp. 273-281, 2000.
- [4] M. A. "Ozt"urk and Y. B. Jun, "On The Centroid of The Prime Gamma Rings II" *Turkish J. Math.*; vol. 25, pp. 367-377, 2001.

- **[5]** A. H. Majeed and S. k. Motashar, "Γ-Centralizing Mappings of Semiprime Γ-rings" *Iraqi Journal of Science*; vol. 53, no. 3, pp. 657-662, 2012.
- [6] H. E. Bell and G.Mason, "On Derivations in Near Rings and Rings" *Math. J. Okayama Univ.*; vol. 34, pp. 135–144, 1992.
- [7] O. Arslan and B. Arslan, "Strong Commutativity Preserving Derivations on Lie Ideals of Prime Γ-Rings" *Mathematica Moravica*; vol. 23, no. 1, pp. 63–73, 2019.
- **[8]** S. A. Hamil and A. H. Majeed, "Generalized Strong Commutativity Preserving Centralizers of Semiprime Γ- Rings" *Iraqi Journal of Science*; vol. 60, no. 10, pp. 2223-2228, 2019.
- [9] K. H. KIM and Y. H. LEE, "On Generalized Semiderivations of Γ-Rings" *Electronic Journal of Mathematical Analysis and Applications*; vol. 5, no. 2, pp. 18-27, 2017.
- [10] M. Brešar and C. R. Miers, "Strong Commutativity Preserving Maps of Semiprime Rings" *Canad. Math. Bull.*; vol. 37, no. 4, pp. 457–460, 1994.
- **[11]** A. A. Abdulridha and A. H. Majeed, "N-(anti) Strong Commutativity Preserving Maps on Semiprime Γ -Rings" *AIP Conference Proceedings*; Accepted for publication.