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Abstract

In this paper, the bi-criteria machine scheduling problems (BMSP) are solved,
where the discussed problem is represented by the sum of completion and the sum of
late work times (1//(XC;, X.V;)) simultaneously. In order to solve the suggested
BMSP, some metaheurisitc methods are suggested which produce good results. The
suggested local search methods are simulated annulling and bees algorithm. The
results of the new metaheurisitc methods are compared with the complete enumeration
method, which is considered an exact method, then compared results of the heuristics
with each other to obtain the most efficient method.

Keywords: Bi-criteria machine scheduling problems, Complete enumeration method,
completion time, Late work times.
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1. Introduction

Machine scheduling optimization problems with two criteria are based on competing for

objective functions, a set is formed and called the Efficient Pareto optimal solutions set, which
is regarded as a vicarious of one optimal solution. This set contains one (or more) solution(s)
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that, according to the objective functions, are superior to any other solution(s). In the literature,
there are two approaches for multicriteria scheduling problems [1]; the simultaneous approach
and the hierarchical approach.

The most important in the last five years' literature surveys are: some efficient algorithms
are suggested for solving the BMSP. Ali and Abdul-Kareem (2017) [2], in their paper, some
kinds of local search methods (LSM): Bees algorithm (BA) and particle swarm optimization
(PSO) are used to minimize (Tyax, Vinax, 22 V;) simultaneously.

Gallo and Capozzi (2019) [3] used Simulated Annealing (SA) to solve MSP on m machines
to minimize the total completion time (¥ X C/). SA and its key parameters (tempering,
freezing, cooling, and the number of contours to be explored) are investigated, and the choices
made in identifying these parameters are illustrated in order to generate a good algorithm that
efficiently solves the MSP.

Ali and Ahmed (2020) [4] introduced a multicriteria objectives function 1//(X.C;, Ry, Trnax)
P-problem in a single MSP which is solved by BAB and some heuristic methods. Some special
cases are introduced and proved to find efficient solutions to problems. Then they solved
1//(XC; + Ry, + Tynax) Pi-problem to find optimal or good solutions by using exact and
heuristic methods [5]. Lastly, the BA and PSO are used for solving the two suggested problems

[6].

Ali et. al. (2021) [7] implemented the Neural Networks (NN) to manipulate the MSP
1//(Trmax> Vinax, 2 V) simultaneously. The results prove the efficiency of NN which is learned
by back propagation algorithm for n < 500 jobs.

Ibrahim et. al. (2022) [8] proposed a BAB method to solve the multi-objective function
(MOF) problem 1//(2Ej +T,+C +U; + Vj). Also, they use fast LSMs (SA and Genetic
Algorithms (GA)) yielding near optimal solution. they report on computation experience; the
performances of the exact and LSMs are tested on a large class of test problems.

The mathematical formulation of 1//(2Cj,ZVj) is discussed in section two we will discuss

problem (CV-problem) and its subproblem (1//2(Cj +Vj)) problem (CV;-problem). The

simulated annealing and Bees Algorithm are introduced as a metaheuristic method to solve the
two problems which are introduced in section three. Section four introduces the comparative
and the practical and results. In section five, we will present the discussion of the practical
results. Finally, in section six, some conclusions and recommendations are presented. In this
manner we introduce some important notations:
First, we have to introduce the following notations:

The number of jobs.

pj : The processing time of jobs j.
d; : The due date of jobs j.
G : The completion time of job j, where C; = Z{;ﬂpk.
T; : The tardiness of job j, T; = max {C; — d;, 0}.
V; : The late work of job j, where V; = min{p;, T;}.
>C; : Total completion time.
XV; : Total late work.
(1) : Optimal Value of CVi-problem.
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Definition (1) [9]: A schedule S is said to be efficient if another schedule S’ cannot satisfy
fi(§") < £;(S), j =1, ..., k, with at least one of the above holding as a strict inequality. Another

way to say this is that S’ dominates S.

Definition (2) [10]: In a multicriteria resolution, the term "optimize" refers to a solution in
which there is no way to develop or improve one objective without worsening the other.
Definition (3): Let (fy, go) be a solution for multi-criteria problem 1//(f, g), then the
Euclidean distance (d) for this solution is:

Remark (1): The d distance can be a good measure to find the best efficient solution from the
set of Pareto optimal set.

Proposition (1): Let (f,,90) be a solution for multi-criteria problem 1//(f,g), and f, #
0 and g, # 0 then always: f, < d.
Proof: Let's assume that f;, > d, from (1):

fo > ,’fo2 + 95
fé > fe + g5
This is a contradiction since the above inequality is not true even f, = 0 and g, = 0.

2. The 1//(%C;, %.V;) Problem with Mathematical Formulation

Consider we have a single machine, with set N = {1,2, ..., n} with n jobs, let ¢ € S which
is the set of all feasible schedules. We want to minimize the problem (ZC]-,ZVJ-), which is
formulated as follows:

Min(3G, 3V} )
Subject to,
Ci = Doy j=12,..,n
Cj = C(j—l) + Po(j) j=23,..,n; ...(CV)
Tj = C] - da(j): ] = 1,2, ey, N
V= min{pj,Tj}, j=12,..,n
T;,V; =2 0, j=12,..,n)
For CV-problem, we can deduce subproblem: The 1//3C; + XV; Problem:
Min{¥C; + YV;} )
Subject to,
Ci = Doy j=12,..,n
Cj = C(j—l) + Po(j) j=23..,n % (CVl)
T; = Cj — dg(jy, j=12,..,n
Vi = min{pj,Tj}, j=12,..,n
T;,V: = 0, j=1.2,..,n

J’ J
The problems CV and CV; are NP-hard because of };V; is NP-hard.
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Example 1:
From Remark (1), we check the usefulness of the d distance by using the following scheduling
data:

After applying the Complete Enumeration Method (CEM) for this data, we obtain (4) efficient
solutions as shown in Table 1.

Table 1: Efficient solutions for example (1) with distance d.
i Efficient Sequence Efficient Solution d

42,31 (51,10)* 51.97
42,13 (52,6)# 52.35
41,23 (57,2) 57.04
41,32 (61,0) 61.00

Notice that, for CV-problem, the first efficient solution has the best d among all efficient
solutions (signed with *), while for CV,-problem, the optimal solution is the second one (signed
with #).

3. Metaheuristic Methods
In this section, we will discuss two metaheuristic methods to solve CV and CVi; these two
methods are simulated annealing and the Bees Algorithm.

3.1 Simulated Annealing

The physical annealing process is represented by simulated annealing (SA) [3]. This name
refers to the simulation of the annealing process, which is associated with a temperature-
decreasing annealing schedule. SA is a local optimization technique in which the initial solution
is always improved by small local effects until none of these effects can improve the solution
any further.

The initial state or solution of a thermodynamic system was chosen at energy (Cost) and
temperature as the original Metropolis acceptance criterion (Temp or t). Keeping constant t,
the initial setting of the system is perturbed to produce a new setting and the energy AC is
calculated. If AC is negative, the new setting is accepted without conditions; otherwise, it is
accepted with a probability determined by the Boltzmann factor e ~4¢/T¢m? tg stay away from
trapping in the local optima. A simple scheme of SA [11] is as follows:

Simulated Annealing Algorithm
[ch']=SA(ch)
ch' = ch;
Cost = Evaluate(ch');
Temp = InitialTemperature,;
WHILE (Temp > FinalTemperature)
ch, = Mutate(ch');
NewCost = Evaluate(ch,);
AC = NewCost — Cost;
IF (AC < 0) OR (e~4¢/Tem? > Rand) THEN
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Cost = NewC(Cost;
ch’ = chy;
ENDIF
Temp = cooling rate X Temp;
END{WHILE}
Return the best solution;
END
It's important to mention that:
e cooling rate is 0.95.
e Temperature is 10000.
e Temperature is 0.
¢ Rand as a uniform real random.
e ch is the chromosome, in MSP its represent the sequence of scheduling, for instance, for n =
5,ch=[34521].

3.2 Bees Algorithm (BA)

The main processes in Bees Algorithm (BA) are the queen bee's mating flight with drones,
the queen bee's creation of new broods, worker fitness improvement, worker adaptation, and
the replacement of the least fit queen with the fittest brood [12].

The challenge is to adapt the colony's self-organization behavior to problem solving. The BA
is an optimization algorithm inspired by honey bee foraging behavior to find the best solution.
[13].

The most important parameters of BA are:

Number of scout bees which are be selected randomly.

Number of sites of flowers which are selected out of n visited sites.
Number of best sites which are selected out of m site randomly.
Number of bees recruited for best e sites.
nsp Number of bees recruited for the remaining (m — e) selected sites.
ngh B Initial size of patches which includes site and its neighborhood and stopping conditions.

The main steps of BA are as follows:

Bees Algorithm

INPUT: k,m,e, nep, nsp, Maximum of iterations.

Stepl. Initialization of random solutions population.

Step2. Evaluate fitness of each solution (individual) in the population.

Step3. WHILE stopping criterion is not met

Step4. Select sites for neighborhood search.

Step5. Choosing recruit bees for the selected sites and evaluate fitness’s.
Step6. Select the fittest or best bee from each patch.

Step7. Assign remaining bees to search randomly and evaluate their fitness’s.
Step8. END{WHILE}.

OUTPUT: Best solutions.

END.

Note: The random solutions (RS) in population of MSP is the random sequence of scheduling,
for instance, forn = 4,RS = [4 1 3 2].

The advantages of Bees algorithm [19]:
¢ BA is more scalable; it takes less time to complete the objective.
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¢ BA is more efficient at finding and collecting food because it requires fewer steps.

4. Practical Results of CV and CV1-Problems

Since we deal with the MSP, so the p; and d; values are generated randomly for five examples
s.t. pj € [1,10] and:

[1,30], 1<n<?29.

[1,40], 30<n<99.

[1,50], 100 <n <999.

[1,70], otherwise.

with condition d; = p;, forj = 1,2,...,n.

Now, we introduce the following abbreviations:

d; €

Example Number.

Average.

Average number of efficient solutions.
Average Absolute Error.
Average of Time per second.
Average of Euclidean distance.
Average Single Objective Function.
Objective Function value for CV;-problem.
Average Multi Objective Function.
Objective Function value for CV-problem.
0 < Real < 1.

4.1 Comparison Results of CV-problem.

The CEM, BA and SA methods all were tested by programming them using MATLAB
ver2017R.

Comparison efficient results between CEM(F) with LSM: BA(F) and SA(F) for CV-problem
are shown in table (2), forn = 4: 11.

Table 2: ComEarison between CEMgFZ, BAng and SAng for CV-ErobIem, n=4:11.

CEM(F)
AT

AMOF ANS Ad AT ANS Ad AAE AT ANS Ad AAE

(5497.00 R 26 555 R 26 597 (1L7,0.1) 26 555  (0,0)

(64683) R 22 653 R 34 725 (508) 20 650 (0.4,0.1)
(99.9113) R 50 1007 1 28 1148 (3.2,16) 40 101.0 (1.4,1.3)
(131.0,165) R 54 1322 1.0 28 1550 (10,1.4) 40 1316 (4.40.2)
(206.1,29.7) R

(230.9,31.8) 3.7 36 2331 11 34 2585 (34.2,3.8) 24 2410 (1,05)
(202.427.7) 412 56 2043 11 3.4 2616 (47.8,17) 30 2303 (0.7,0.9)
(298.7,42.4) 470.6 3.8 3018 1.2 2.8 3629 (74.8,0.7) 34 3077 (21.50.1)

R
R
R
R
32 2082 1.1 28 2436 (23519 R 30 2116 (6.9,0.3)
R
R
R
(161.0,21.8) 644 39 1626 08 3 1911 (25015 O 31 1680 (4.50.4)

By using Table 2, Figure 1 shows the Ad values for results of CEM(F), BA(F) and SA(F), for
CV-problem, for n = 4:11.
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Figure 1: Comparison results of Ad for CEM(F), BA(F) and SA(F) for n = 4:11.

The comparison results between BA(F) and SA(F) for CV-problem for n =
30,70,100,300,700,1000,3000 are shown in Table 3.

Table 3: a comparison results between BA(F) and SA(F) for CV-problem for different n.

AMOF AT ANS Ad AMOF AT ANS Ad
(2456.8,139.5) 20 34 25437 (1964.4,134.8) R 54 19797
(12933.5,355.1) 51 34 134424 (9922.6,347.9) 15 34  10019.9
(27478.0,526.4) 68 2.6  27587.1 (21535.2,520.6) 19 72  20604.1

(244350.1,16155)  19.2 3.4 2495218  (235625.2,1609.6) 5.2 4.6  234054.9
(1336548.6,3806.6) 359 4.2 13482438  (1333398.8,3800.0) 104 22  1324956.1
(2721058.4,5445.0)  39.9 3.0 27595280  (2754414.65447.8) 144 2.4  2729210.4
(24566261.5,16433.5) 103.8 3.0 24675496.5 (24720184.2,164335) 43.2 1.2 24678990.9

4.2 Comparison Results of CVi-problem.
The optimal results of CEM(F;) are compared with results of BA(F;) and SA(F;), n =
4:11, for CVi-problem, these results are shown in Table 4.

Table 4: Comparison between CEM(F;) and BA(F;) and SA(F;), n = 4: 11, for CV1-problem.
) CEM(F,) BA(F,) SA(F)
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oP AT ASOF AT AAE ASOF AT AAE

4 60.0 R 60.0 R 0 60.0 R 0

5 71.6 R 71.6 R 0 71.6 R 0

6 106.0 R 106.0 R 0 108.4 R 24
7 142.2 R 142.8 R 0.6 143.2 R

8 233.0 R 233.8 R 0.8 235.0 R

) 259.8 5.7 265.0 R 52 261.8 R

10 225.0 66.9 244.4 R 194 225.2 R 0.2
11 339.4 667.4 357.0 R 17.6 341.0 R 1.6
Av 179.6 92.5 185.1 R 55 180.8 R 1.2

Notice that the heuristics BA(F;), and SA(F;) give good objective values compared with
CEM(F,), and that can be noticed from AAE, for CV1-problem.

For CV1i-problem, Figure 2 shows the comparison results of CEM(F;), BA(F;) and SA(F,). All
these results are obtained from Table 4, for number of jobs n = 4: 11.

400

—%— CEM

350

8] 0]
tn o
o o

Obijective Function (Z)
B
o

150

100

4 5 & 7 8 9 10 11
n
Figure 2: Comparison results of CEM(F;), BA(F;) and SA(F;) for n = 4:11.

Table 5 describes the average of best solutions for CVi-problem for n =
30,70,100,300,700,1000 and 3000, using BA(F;) and SA(F;).
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Table 5: Results of comparison of BA(F;) and SA(F;) for (CV1), for different n.

ASOF ASOF

2428.2 R 2019.8 R
12869.0 1.4 9935.4 R
27305.4 1.9 20476.4 R

241951.2 7.1 235602.4 2.0
1322347.0 5.0 1338330.4 2.8
2697302.8 8.7 2714383.6 3.1

24488108.6 14.6 24788317.6 7.5
4113187.0 5.5 4158438.3 2.2

5. Evaluation of Practical Results of The Suggested Problems

1. For CV-problem:

a. The SA(F) is better than BA(F) in accuracy compared with CEM(F) and in CPU-time they
approximate each other (see tables (2)) forall n < 11.

b. We notice that SA(F) has good accuracy compared with BA(F), for 30 < n < 700, while
BA(F) is better for 1000 < n < 3000. In CPU-time SA(F) is better for all different n , see
Table 3.

2. For CV1-problem:

a. In accuracy, we see that SA(F;) is relatively better than BA((F;) in accuracy for n < 11
compared with CEM((F;), and so on in CPU-time , see Table 4.

b. We see that SA(F) has better accuracy compared with BA(F), for 30 < n < 300, while
BA(F) is better for 700 < n < 3000. In CPU-time SA(F) is better for all n (see tables (5)).

6. Conclusions and Future Work

1. The practical results of this paper show the efficiency of the two suggested methods: BA and
SA for the two problems.

2. For CV-problem, n < 700, the performance of SA is better than BA in accuracy, while BA
is better than SA for n > 700, and SA is better CPU-time for all n.

3. For CVi-problem, n < 300, the performance of SA is better than BA in accuracy, while BA
IS better than SA for n > 300, and SA is better CPU-time for all n.

4. To increase the efficiency of the two LSMSs, we suggest a hybrid between SA and BA to
solve the two problems CV and CV:.

5. For future work, we suggest using other local search methods (like Ant colony algorithm,
genetic algorithm, particle swarm optimization..., etc) to find efficient and approximation
solutions for CV and CV:-problem for n > 100.
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