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Abstract 

     In this paper, the bi-criteria machine scheduling problems (BMSP) are solved, 

where the discussed problem is represented by the sum of completion and the sum of 

late work times (1//(∑𝐶𝑗 , ∑𝑉𝑗)) simultaneously. In order to solve the suggested 

BMSP, some metaheurisitc methods are suggested which produce good results. The 

suggested local search methods are simulated annulling and bees algorithm. The 

results of the new metaheurisitc methods are compared with the complete enumeration 

method, which is considered an exact method, then compared results of the heuristics 

with each other to obtain the most efficient method. 

 

Keywords: Bi-criteria machine scheduling problems, Complete enumeration method, 

completion time, Late work times. 

 

 

 الاعمال المتاخرة قات و ا ومجموع ت الاتماماقاو مجموع مسألة  حلول باريتو الدقيقة والتقريبية ل
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 الخلاصه 

. ان  (BMSP)  المعايير  ثنائيةبعض الطرق لحل واحدة من مسائل جدولة الماكنة   تم ايجادفي هذا البحث       
مناقشتها   المراد  امسألة  ب  تمثل تالمسألة  الاتمام وقمجموع  المتاخرة ومجموع    ات   الاعمال 

 (1//(∑𝐶𝑗 , ∑𝑉𝑗))   اقتراح  انيا تم  المسألة,  الحدسية . لحل هذه  نتائج جيدة.و   فوق  الطرق    التي اعطت  ان 
ان نتائج الطرق الحدسية المقترحة    . النحلة  خوارزميالمقترحة لحل المسالة المذكورة هي طريقة محاكاة التلدين و 

  يقتين قارنة نتائج تلك الطرق المقترحة مع بعضها لتحديد اي الطر مومن ثم تم  العد التام    طريقةتم مقارنتها مع  
 .  أكفالا هي

1. Introduction 

     Machine scheduling optimization problems with two criteria are based on competing for 

objective functions, a set is formed and called the Efficient Pareto optimal solutions set, which 

is regarded as a vicarious of one optimal solution. This set contains one (or more) solution(s) 
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that, according to the objective functions, are superior to any other solution(s). In the literature, 

there are two approaches for multicriteria scheduling problems [1]; the simultaneous approach 

and the hierarchical approach. 

 

      The most important in the last five years' literature surveys are: some efficient algorithms 

are suggested for solving the BMSP. Ali and Abdul-Kareem (2017) [2], in their paper, some 

kinds of local search methods (LSM): Bees algorithm (BA) and particle swarm optimization 

(PSO) are used to minimize (𝑇𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥, ∑ 𝑉𝑗) simultaneously. 

 

      Gallo and Capozzi (2019) [3] used Simulated Annealing (SA) to solve MSP on 𝑚 machines 

to minimize the total completion time (∑∑𝐶𝑗
𝑘). SA and its key parameters (tempering, 

freezing, cooling, and the number of contours to be explored) are investigated, and the choices 

made in identifying these parameters are illustrated in order to generate a good algorithm that 

efficiently solves the MSP. 

 

     Ali and Ahmed (2020) [4] introduced a multicriteria objectives function 1//(∑𝐶𝑗 , 𝑅𝐿 , 𝑇𝑚𝑎𝑥) 

𝑃-problem in a single MSP which is solved by BAB and some heuristic methods. Some special 

cases are introduced and proved to find efficient solutions to problems. Then they solved 

1//(∑𝐶𝑗 + 𝑅𝐿 + 𝑇𝑚𝑎𝑥) 𝑃1-problem to find optimal or good solutions by using exact and 

heuristic methods [5]. Lastly, the BA and PSO are used for solving the two suggested problems 

[6]. 

 

     Ali et. al. (2021) [7] implemented the Neural Networks (NN) to manipulate the MSP 

1//(𝑇𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥, ∑𝑉𝑗) simultaneously. The results prove the efficiency of NN which is learned 

by back propagation algorithm for 𝑛 ≤ 500 jobs. 
 

     Ibrahim et. al. (2022) [8] proposed a BAB method to solve the multi-objective function 

(MOF) problem 1//(∑𝐸𝑗 + 𝑇𝑗 + 𝐶𝑗 + 𝑈𝑗 + 𝑉𝑗). Also, they use fast LSMs (SA and Genetic 

Algorithms (GA)) yielding near optimal solution. they report on computation experience; the 

performances of the exact and LSMs are tested on a large class of test problems. 

     The mathematical formulation of 1//(∑𝐶𝑗 , ∑𝑉𝑗) is discussed in section two we will discuss 

problem (𝐶𝑉-problem) and its subproblem (1//∑(𝐶𝑗 + 𝑉𝑗)) problem (𝐶𝑉1-problem). The 

simulated annealing and Bees Algorithm are introduced as a metaheuristic method to solve the 

two problems which are introduced in section three. Section four introduces the comparative 

and the practical and results. In section five, we will present the discussion of the practical 

results. Finally, in section six, some conclusions and recommendations are presented. In this 

manner we introduce some important notations: 

First, we have to introduce the following notations: 

n : The number of jobs. 

𝒑𝒋 : The processing time of jobs 𝑗. 

𝒅𝒋 : The due date of jobs 𝑗. 

𝑪𝒋 : The completion time of job 𝑗, where 𝐶𝑗 = ∑ 𝑝𝑘
𝑗
𝑘=1 . 

𝑻𝒋 : The tardiness of job 𝑗, 𝑇𝑗 = max {𝐶𝑗 − 𝑑𝑗 , 0}. 

𝑽𝒋 : The late work of job j, where  𝑉𝑗 = 𝑚𝑖𝑛{𝑝𝑗 , 𝑇𝑗}. 

∑𝑪𝒋 : Total completion time. 

∑𝑽𝒋 : Total late work. 

𝑶𝑷 : Optimal Value of CV1-problem. 

https://www.researchgate.net/profile/Crescenzio-Gallo?_sg%5B0%5D=mjzOIAYEh55spELNidFaW6M3eRa0a3y-9J9-Op_mDs1zGSS9ksr0viN7PMlZtv6t-YAl2NQ.rdXx4K2lPcXjvUW0XCgPjgT_DUEeA2ChVl70DMSwZmjVdT0Z04GZUtsV8TSJOdYoexcgh8vWgIs2tCo6Z1UW-Q&_sg%5B1%5D=pc0i85mrjY5pGnh2dUoZ6ap-5lX6X2Wnbfklrwser87MQTqiWOHGWPLdThJRGtvrtEVwS4E.MzG5rnsarY5TTRt4gtnD12pUU6YFW5WuR9JMBWBBcK81ug24FP6FZldA0A-EZEzbbXs9N5_N2q9kzRtzUR9qhA
https://www.researchgate.net/profile/Crescenzio-Gallo?_sg%5B0%5D=mjzOIAYEh55spELNidFaW6M3eRa0a3y-9J9-Op_mDs1zGSS9ksr0viN7PMlZtv6t-YAl2NQ.rdXx4K2lPcXjvUW0XCgPjgT_DUEeA2ChVl70DMSwZmjVdT0Z04GZUtsV8TSJOdYoexcgh8vWgIs2tCo6Z1UW-Q&_sg%5B1%5D=pc0i85mrjY5pGnh2dUoZ6ap-5lX6X2Wnbfklrwser87MQTqiWOHGWPLdThJRGtvrtEVwS4E.MzG5rnsarY5TTRt4gtnD12pUU6YFW5WuR9JMBWBBcK81ug24FP6FZldA0A-EZEzbbXs9N5_N2q9kzRtzUR9qhA
https://www.researchgate.net/scientific-contributions/Vito-Capozzi-2125288691?_sg%5B0%5D=mjzOIAYEh55spELNidFaW6M3eRa0a3y-9J9-Op_mDs1zGSS9ksr0viN7PMlZtv6t-YAl2NQ.rdXx4K2lPcXjvUW0XCgPjgT_DUEeA2ChVl70DMSwZmjVdT0Z04GZUtsV8TSJOdYoexcgh8vWgIs2tCo6Z1UW-Q&_sg%5B1%5D=pc0i85mrjY5pGnh2dUoZ6ap-5lX6X2Wnbfklrwser87MQTqiWOHGWPLdThJRGtvrtEVwS4E.MzG5rnsarY5TTRt4gtnD12pUU6YFW5WuR9JMBWBBcK81ug24FP6FZldA0A-EZEzbbXs9N5_N2q9kzRtzUR9qhA
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Definition (1) [9]: A schedule 𝑆 is said to be efficient if another schedule 𝑆′ cannot satisfy 

𝑓𝑗(S
′) ≤ 𝑓𝑗(S), 𝑗 = 1,… , 𝑘, with at least one of the above holding as a strict inequality. Another 

way to say this is that 𝑆′ dominates 𝑆. 

 

Definition (2) [10]: In a multicriteria resolution, the term "optimize" refers to a solution in 

which there is no way to develop or improve one objective without worsening the other. 

Definition (3): Let (𝑓0, 𝑔0) be a solution for multi-criteria problem 1//(𝑓, 𝑔), then the 

Euclidean distance (𝑑) for this solution is: 

𝑑 = √𝑓0
2 + 𝑔0

2         …(1) 

Remark (1): The 𝑑 distance can be a good measure to find the best efficient solution from the 

set of Pareto optimal set. 

 

Proposition (1): Let (𝑓0, 𝑔0) be a solution for multi-criteria problem 1//(𝑓, 𝑔), and 𝑓0 ≠
0 and 𝑔0 ≠ 0 then always: 𝑓0 ≤ 𝑑. 

Proof: Let's assume that 𝑓0 > 𝑑, from (1): 

𝑓0 > √𝑓0
2 + 𝑔0

2 

𝑓0
2 > 𝑓0

2 + 𝑔0
2 

This is a contradiction since the above inequality is not true even 𝑓0 = 0 and 𝑔0 = 0. 

 

2. The  𝟏//(∑𝑪𝒋, ∑𝑽𝒋) Problem with Mathematical Formulation 

     Consider we have a single machine, with set 𝑁 = {1,2, … , 𝑛} with 𝑛 jobs, let 𝜎 ∈ 𝑆 which 

is the set of all feasible schedules. We want to minimize the problem (∑𝐶𝑗 , ∑𝑉𝑗), which is 

formulated as follows: 

𝑀𝑖𝑛{∑𝐶𝑗 , ∑𝑉𝑗}                                       

Subject to,                                              
𝐶𝑗 ≥ 𝑝𝜎(𝑗),                      𝑗 = 1,2, … , 𝑛.

𝐶𝑗 = 𝐶(𝑗−1) + 𝑝𝜎(𝑗),     𝑗 = 2,3, … , 𝑛.

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝜎(𝑗),            𝑗 = 1,2, … , 𝑛.

𝑉𝑗 = 𝑚𝑖𝑛{𝑝𝑗 , 𝑇𝑗},          𝑗 = 1,2, … , 𝑛.

 𝑇𝑗 , 𝑉𝑗 ≥ 0,                       𝑗 = 1,2, … , 𝑛.}
 
 
 

 
 
 

      …(CV) 

 

For CV-problem, we can deduce subproblem: The 1//∑𝐶𝑗 + ∑𝑉𝑗 Problem: 

𝑀𝑖𝑛{∑𝐶𝑗 + ∑𝑉𝑗}                                       

Subject to,                                              
𝐶𝑗 ≥ 𝑝𝜎(𝑗),                      𝑗 = 1,2, … , 𝑛.

𝐶𝑗 = 𝐶(𝑗−1) + 𝑝𝜎(𝑗),     𝑗 = 2,3, … , 𝑛.

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝜎(𝑗),            𝑗 = 1,2, … , 𝑛.

𝑉𝑗 = 𝑚𝑖𝑛{𝑝𝑗, 𝑇𝑗},          𝑗 = 1,2, … , 𝑛.

 𝑇𝑗, 𝑉𝑗 ≥ 0,                       𝑗 = 1,2, … , 𝑛. }
 
 
 

 
 
 

     ...(CV1) 

The problems 𝐶𝑉 𝑎𝑛𝑑 𝐶𝑉1 are NP-hard because of ∑𝑉𝑗 is NP-hard. 
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Example 1: 

From Remark (1), we check the usefulness of the 𝑑 distance by using the following scheduling 

data: 

 

 1 2 3 4 

𝒑𝒊 10 5 9 2 

𝒅𝒊 13 28 24 29 

 

After applying the Complete Enumeration Method (CEM) for this data, we obtain (4) efficient 

solutions as shown in Table 1. 

 

Table 1: Efficient solutions for example (1) with distance 𝑑. 

𝒊 Efficient Sequence Efficient Solution 𝒅 

1 4,2,3,1 (51,10)* 51.97 

2 4,2,1,3 (52,6)# 52.35 

3 4,1,2,3 (57,2) 57.04 

4 4,1,3,2 (61,0) 61.00 

Notice that, for 𝐶𝑉-problem, the first efficient solution has the best 𝑑 among all efficient 

solutions (signed with *), while for 𝐶𝑉1-problem, the optimal solution is the second one (signed 

with #). 

 
3. Metaheuristic Methods 

     In this section, we will discuss two metaheuristic methods to solve CV and CV1; these two 

methods are simulated annealing and the Bees Algorithm. 

 

3.1 Simulated Annealing 

     The physical annealing process is represented by simulated annealing (SA) [3]. This name 

refers to the simulation of the annealing process, which is associated with a temperature-

decreasing annealing schedule. SA is a local optimization technique in which the initial solution 

is always improved by small local effects until none of these effects can improve the solution 

any further. 

 

     The initial state or solution of a thermodynamic system was chosen at energy (𝐶𝑜𝑠𝑡) and 

temperature as the original Metropolis acceptance criterion (𝑇𝑒𝑚𝑝 or 𝑡). Keeping constant t, 

the initial setting of the system is perturbed to produce a new setting and the energy 𝛥𝐶 is 

calculated. If 𝛥𝐶 is negative, the new setting is accepted without conditions; otherwise, it is 

accepted with a probability determined by the Boltzmann factor 𝑒−𝐶/𝑇𝑒𝑚𝑝 to stay away from 

trapping in the local optima. A simple scheme of SA [11] is as follows: 

Simulated Annealing Algorithm 

[𝑐ℎ′]=SA(𝑐ℎ) 

 𝑐ℎ′ =  𝑐ℎ; 

 𝐶𝑜𝑠𝑡 = Evaluate(𝑐ℎ′); 
 𝑇𝑒𝑚𝑝 =  𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒; 

 WHILE (𝑇𝑒𝑚𝑝 >  𝐹𝑖𝑛𝑎𝑙𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) 

  𝑐ℎ1 = Mutate(𝑐ℎ′); 
  𝑁𝑒𝑤𝐶𝑜𝑠𝑡 = Evaluate(𝑐ℎ1); 

  𝐶 =  𝑁𝑒𝑤𝐶𝑜𝑠𝑡 − 𝐶𝑜𝑠𝑡; 
  IF (𝐶 ≤  0) OR (𝑒−𝐶/𝑇𝑒𝑚𝑝 > 𝑅𝑎𝑛𝑑) THEN 
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   𝐶𝑜𝑠𝑡 = 𝑁𝑒𝑤𝐶𝑜𝑠𝑡; 
   𝑐ℎ′ =  𝑐ℎ1; 

  ENDIF 

  𝑇𝑒𝑚𝑝 = 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 × 𝑇𝑒𝑚𝑝; 

 END{WHILE} 

 Return the best solution; 

END 

 It's important to mention that: 

• 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 is 0.95. 

• 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 is 10000. 

• 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 is 0. 

• 𝑅𝑎𝑛𝑑 as a uniform real random. 

• 𝑐ℎ is the chromosome, in MSP its represent the sequence of scheduling, for instance, for 𝑛 =
5, 𝑐ℎ = [3 4 5 2 1]. 
 
3.2 Bees Algorithm (BA) 

     The main processes in Bees Algorithm (BA) are the queen bee's mating flight with drones, 

the queen bee's creation of new broods, worker fitness improvement, worker adaptation, and 

the replacement of the least fit queen with the fittest brood [12]. 

The challenge is to adapt the colony's self-organization behavior to problem solving. The BA 

is an optimization algorithm inspired by honey bee foraging behavior to find the best solution. 

[13]. 

The most important parameters of BA are: 

𝒌 : Number of scout bees which are be selected randomly. 

𝒎 : Number of sites of flowers which are selected out of 𝑛 visited sites. 

𝒆 : Number of best sites which are selected out of 𝑚 site randomly. 

𝒏𝒆𝒑 : Number of bees recruited for best 𝑒 sites. 

𝒏𝒔𝒑 : Number of bees recruited for the remaining (𝑚 − 𝑒) selected sites. 

𝒏𝒈𝒉 : Initial size of patches which includes site and its neighborhood and stopping conditions. 

The main steps of BA are as follows: 

 

Bees Algorithm 

INPUT:   𝑘,𝑚, 𝑒, 𝑛𝑒𝑝, 𝑛𝑠𝑝, Maximum of iterations. 

Step1. Initialization of random solutions population . 

Step2. Evaluate fitness of each solution (individual) in the population. 

Step3. WHILE stopping criterion is not met 

Step4. Select sites for neighborhood search. 

Step5. Choosing recruit bees for the selected sites and evaluate fitness’s. 

Step6. Select the fittest or best bee from each patch. 

Step7. Assign remaining bees to search randomly and evaluate their fitness’s . 

Step8.   END{WHILE}. 

OUTPUT: Best solutions. 

END. 

Note: The random solutions (𝑅𝑆) in population of MSP is the random sequence of scheduling, 

for instance, for 𝑛 = 4, 𝑅𝑆 = [4 1 3 2]. 
 

The advantages of Bees algorithm [19]: 

• BA is more scalable; it takes less time to complete the objective. 
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• BA is more efficient at finding and collecting food because it requires fewer steps. 

 

4. Practical Results of CV and CV1-Problems 

Since we deal with the MSP, so the 𝑝𝑗 and 𝑑𝑗  values are generated randomly for five examples 

s.t. 𝑝𝑗 ∈ [1,10] and: 

 𝑑𝑗 ∈ {

[1,30],        1 ≤ 𝑛 ≤ 29.  
[1,40],     30 ≤ 𝑛 ≤ 99.   
[1,50],   100 ≤ 𝑛 ≤ 999.
[1,70],        otherwise.     

 

with condition 𝑑𝑗 ≥ 𝑝𝑗 , for 𝑗 = 1,2, . . . , 𝑛. 

Now, we introduce the following abbreviations: 

 

𝑬𝒙 : Example Number. 

𝑨𝒗 : Average. 

𝑨𝑵𝑺 : Average number of efficient solutions. 

𝑨𝑨𝑬 : Average Absolute Error. 

𝑨𝑻 : Average of Time per second. 

𝑨𝒅 : Average of Euclidean distance. 

𝑨𝑺𝑶𝑭 : Average Single Objective Function. 

𝑭𝟏 : Objective Function value for 𝐶𝑉1-problem. 

𝑨𝑴𝑶𝑭 : Average Multi Objective Function. 

𝑭 : Objective Function value for CV-problem. 

𝑹 : 0 < Real < 1. 

 

4.1 Comparison Results of CV-problem. 

The CEM, BA and SA methods all were tested by programming them using MATLAB 

ver2017R. 

Comparison efficient results between CEM(𝐹) with LSM: BA(𝐹) and SA(𝐹) for CV-problem 

are shown in table (2), for 𝑛 = 4: 11. 

 

Table 2: Comparison between CEM(𝐹), BA(𝐹) and SA(𝐹) for CV-problem, 𝑛 = 4: 11. 

𝒏 CEM(𝑭) BA(𝑭) SA(𝑭) 

𝑨𝑴𝑶𝑭 𝑨𝑻 𝑨𝑵𝑺 𝑨𝒅 𝑨𝑻 𝑨𝑵𝑺 𝑨𝒅 𝑨𝑨𝑬 𝑨𝑻 𝑨𝑵𝑺 𝑨𝒅 𝑨𝑨𝑬 

4 (54.9,7. 0) 𝑅 2.6 55.5 𝑅 2.6 59.7 (1.7,0.1) 𝑅 2.6 55.5 (0,0) 

5 (64.6,8.3) 𝑅 2.2 65.3 𝑅 3.4 72.5 (5,0.8) 𝑅 2.0 65.0 (0.4,0.1) 

6 (99.9,11.3) 𝑅 5.0 100.7 1 2.8 114.8 (3.2,1.6) 𝑅 4.0 101.0 (1.4,1.3) 

7 (131.0,16.5) 𝑅 5.4 132.2 1.0 2.8 155.0 (10,1.4) R 4.0 131.6 (4.4,0.2) 

8 (206.1,29.7) 𝑅 3.2 208.2 1.1 2.8 243.6 (23.5,1.9) 𝑅 3.0 211.6 (6.9,0.3) 

9 (230.9,31.8) 3.7 3.6 233.1 1.1 3.4 258.5 (34.2,3.8) 𝑅 2.4 241.0 (1,0.5) 

10 (202.4,27.7) 41.2 5.6 204.3 1.1 3.4 261.6 (47.8,1.7) 𝑅 3.0 230.3 (0.7,0.9) 

11 (298.7,42.4) 470.6 3.8 301.8 1.2 2.8 362.9 (74.8,0.7) 𝑅 3.4 307.7 (21.5,0.1) 

𝑨𝒗 (161.0,21.8) 64.4 3.9 162.6 0.8 3 191.1 (25.0,1.5) 0 3.1 168.0 (4.5,0.4) 

 

By using Table 2, Figure 1 shows the 𝐴𝑑 values for results of CEM(𝐹), BA(𝐹) and SA(𝐹), for 

CV-problem, for 𝑛 = 4: 11. 
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Figure 1: Comparison results of 𝐴𝑑 for CEM(F), BA(F) and SA(F) for 𝑛 = 4: 11. 

 

     The comparison results between BA(𝐹) and SA(𝐹) for CV-problem for 𝑛 =
30,70,100,300,700,1000,3000 are shown in Table 3. 

 

Table 3: a comparison results between BA(𝐹) and SA(𝐹) for CV-problem for different 𝑛. 

𝒏 BA(𝑭) SA(𝑭) 

𝑨𝑴𝑶𝑭 𝐀𝐓 𝑨𝑵𝑺 𝑨𝒅 𝑨𝑴𝑶𝑭 𝐀𝐓 𝑨𝑵𝑺 𝑨𝒅 

30 (2456.8,139.5) 2.0 3.4 2543.7 (1964.4,134.8) 𝑅 5.4 1979.7 

70 (12933.5,355.1) 5.1 3.4 13442.4 (9922.6,347.9) 1.5 3.4 10019.9 

100 (27478.0,526.4) 6.8 2.6 27587.1 (21535.2,520.6) 1.9 7.2 20604.1 

300 (244350.1,1615.5) 19.2 3.4 249521.8 (235625.2,1609.6) 5.2 4.6 234054.9 

700 (1336548.6,3806.6) 35.9 4.2 1348243.8 (1333398.8,3800.0) 10.4 2.2 1324956.1 

1000 (2721058.4,5445.0) 39.9 3.0 2759528.0 (2754414.6,5447.8) 14.4 2.4 2729210.4 

3000 (24566261.5,16433.5) 103.8 3.0 24675496.5 (24720184.2,16433.5) 43.2 1.2 24678990.9 

 

4.2 Comparison Results of CV1-problem. 

     The optimal results of CEM(𝐹1) are compared with results of BA(𝐹1) and SA(𝐹1),  𝑛 =
4: 11, for CV1-problem, these results are shown in Table 4. 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Comparison between CEM(𝐹1) and BA(𝐹1) and SA(𝐹1), 𝑛 = 4: 11, for CV1-problem. 

𝒏 CEM(𝑭𝟏) BA(𝑭𝟏) SA(𝑭𝟏) 
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𝑶𝑷 𝑨𝑻 𝑨𝑺𝑶𝑭 𝑨𝑻 𝑨𝑨𝑬 𝑨𝑺𝑶𝑭 𝑨𝑻 𝑨𝑨𝑬 

4 60.0 𝑅 60.0 𝑅 0 60.0 𝑅 0 

5 71.6 𝑅 71.6 𝑅 0 71.6 𝑅 0 

6 106.0 𝑅 106.0 𝑅 0 108.4 𝑅 2.4 

7 142.2 𝑅 142.8 𝑅 0.6 143.2 𝑅 1 

8 233.0 𝑅 233.8 𝑅 0.8 235.0 𝑅 2 

9 259.8 5.7 265.0 𝑅 5.2 261.8 𝑅 2 

10 225.0 66.9 244.4 𝑅 19.4 225.2 𝑅 0.2 

11 339.4 667.4 357.0 𝑅 17.6 341.0 𝑅 1.6 

𝑨𝒗 179.6 92.5 185.1 𝑅 5.5 180.8 𝑅 1.2 

Notice that the heuristics BA(𝐹1), and SA(𝐹1) give good objective values compared with 

CEM(𝐹1), and that can be noticed from 𝐴𝐴𝐸, for CV1-problem. 

 

For CV1-problem, Figure 2 shows the comparison results of CEM(𝐹1), BA(𝐹1) and SA(𝐹1). All 

these results are obtained from Table 4, for number of jobs 𝑛 = 4: 11. 

 
Figure 2: Comparison results of CEM(𝐹1), BA(𝐹1) and SA(𝐹1) for 𝑛 = 4: 11. 

 

Table 5 describes the average of best solutions for CV1-problem for 𝑛 =
30,70,100,300,700,1000 and 3000, using BA(𝐹1) and SA(𝐹1). 
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Table 5: Results of comparison of BA(𝐹1) and SA(𝐹1) for (CV1), for different 𝑛. 

𝒏 
BA(𝑭𝟏) SA(𝑭𝟏) 

𝑨𝑺𝑶𝑭 𝑨𝑻 𝑨𝑺𝑶𝑭 𝑨𝑻 

30 2428.2 𝑅 2019.8 𝑅 

70 12869.0 1.4 9935.4 𝑅 

100 27305.4 1.9 20476.4 𝑅 

300 241951.2 7.1 235602.4 2.0 

700 1322347.0 5.0 1338330.4 2.8 

1000 2697302.8 8.7 2714383.6 3.1 

3000 24488108.6 14.6 24788317.6 7.5 

𝑨𝒗 4113187.0 5.5 4158438.3 2.2 

 

5. Evaluation of Practical Results of The Suggested Problems 

1. For CV-problem: 

a. The SA(𝐹) is better than BA(𝐹) in accuracy compared with CEM(𝐹) and in CPU-time they 

approximate each other (see tables (2)) for all 𝑛 ≤ 11. 

b. We notice that SA(𝐹) has good accuracy compared with BA(𝐹), for 30 ≤ 𝑛 ≤ 700, while 

BA(𝐹) is better for 1000 ≤ 𝑛 ≤ 3000. In CPU-time SA(𝐹) is better for all different 𝑛 , see 

Table 3. 

2. For CV1-problem: 

a. In accuracy, we see that SA(𝐹1) is relatively better than BA((𝐹1) in accuracy for 𝑛 ≤ 11 

compared with CEM((𝐹1), and so on in CPU-time , see Table 4. 

b. We see that SA(𝐹) has better accuracy compared with BA(𝐹), for 30 ≤ 𝑛 ≤ 300, while 

BA(𝐹) is better for 700 ≤ 𝑛 ≤ 3000. In CPU-time SA(𝐹) is better for all 𝑛 (see tables (5)). 

 

6. Conclusions and Future Work 

1. The practical results of this paper show the efficiency of the two suggested methods: BA and 

SA for the two problems. 

2. For CV-problem, 𝑛 ≤ 700, the performance of SA is better than BA in accuracy, while BA 

is better than SA for 𝑛 > 700, and SA is better CPU-time for all 𝑛. 

3. For CV1-problem, 𝑛 ≤ 300, the performance of SA is better than BA in accuracy, while BA 

is better than SA for 𝑛 > 300, and SA is better CPU-time for all 𝑛. 

4. To increase the efficiency of the two LSMs, we suggest a hybrid between SA and BA to 

solve the two problems CV and CV1. 

5. For future work, we suggest using other  local search methods (like Ant colony algorithm, 

genetic algorithm, particle swarm optimization…, etc) to find efficient and approximation 

solutions for CV and CV1-problem for 𝑛 > 100. 
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