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Abstract:

This paper constructs and generalizes the numerical Runge-Kutta-Mohammed
(RKM) method for solving twelve-order ordinary differential equations (ODES). The
novel contribution of this study is the development and generalization of the
numerical RKM methods for solving ODEs of the order of less than a tenth. The
algebraic order conditions (OCs) for the proposed RKM method are derived up to
order thirteen using Taylor expansion. Then, the constructed method has been derived
from these order conditions. However, the proposed numerical RKM method has been
evaluated at some implementations and compared to an existing Runge-Kutta (RK)
method to determine the method's viability. Moreover, this comparison demonstrates
the proposed direct method is more efficient than the classical method in terms of
efficiency and accuracy. Also, numerical implementations are used to prove the
efficiency and time complexity of function evaluations. This direct RKM method is a
suggested technique for solving ODEs of twelve orders which has great features like
a direct and efficient method. Consequently, the proposed method requires less time
complexity of computation than other methods.

Keywords: RK, RKN, RKD, RKM, Ordinary Differential Equations; Order; DEs;
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1. Introduction

The ability of mathematics is to describe and resolve practical issues in all branches of
science, including chemistry, physics, engineering, and other sciences. In particular, it is apart
from other branches of science and engineering. One of the most important areas of applied
mathematics is differential equations (DEs), which are used to build mathematical models based
on their most useful tools. Higher-order DEs are frequently used in a variety of fields, including
the physical sciences, solid state physics, fluid physics, quantum physics, plasma physics,
optics, and electrons. According to [1-12], some physical problems, such as the thin film flow
problem, electromagnetic waves, and the oscillatory wave equation, always involve DEs of the
second or third-order. In addition, the authors [13] studied the numerical and asymptotic of
some third-order ODEs relevant to draining and coating flows. The DEs of the fifth-order KdV
have been studied by [14-17] in the context of non-linear optics and quantum mechanics, this
model is significant in physics, and it has applications in the form of sound magnetic waves in
plasma and water waves. However, the authors [18-19] studied a few hydrodynamic stability
issues that only involve eighth-order equations. Studying numerical and approximated solutions
of non-linear DEs is of great importance in scientific computations as they can be accomplished
in the least possible time. The majority of nonlinear DEs do not have analytical solutions. This
justifies our search for more advanced numerical techniques. Accordingly, to review the
derivations and the construction of the numerical methods of RK-type for solving ODEs of
various orders, the authors [20-24] created and derived some types of numerical RK methods
for solving some classes of ODEs of different orders. For this purpose, the derivation of a direct
numerical RKM method used for solving twelve-order ODEs depends on the Taylor expansion
to obtain the order conditions (OCs), whereas the solving of OCs leads to getting the parameters
of the proposed method. Furthermore, the goal of this paper is to enhance the computational
efficiency of the proposed method. However, the proposed direct RKM method is more
accurate and efficient than the current indirect numerical method for solving twelve-order
ODEs.

2. Preliminary
In this section, we introduce some definitions and basic concepts that are related to the
problem of study.

2.1 The Initial Value of Twelves-Order Problem
In this paper, the problem of interest is the initial value problem of twelve-order ODEs of
the following form,
y12(@) = f(z,y(0)); T> T, (1)
with the initial conditions (ICs), y®(0) =i, i=0,1,...,11 (2)
where, f: R - RV, f(r, y(r)) = f, (7, y(r)),fz ('T,y(r))., v, £y (T, y(r))],
and, y(2) = [y; (2),y2 (2), ...,yn ()], oc'= [oc], och, ok, ..., ocfy .
When the ODE in Equation (1) is in N-dimensional space, then, we can simplify it to
w2 (1) = g(w(D); > x5, (3)
Where, w(t) = [y, (1),y; (1), ...,yy (1), 7], and
g(W(T)) = ((E(WI(T)r W (T), ...,WN+1(T))), 0)' forjzlaza'-'aN;
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with ICs, w®(0) =« for i=0,1,...,10.

The unique solution to Equation (1) or Equation (3) always exists due to it has satisfied the
hypothesis of Theorem 1 by each component of the system in Equation (1) or (2).

Theorem 1
Let w®(r) = f(r,w) where f:RY - RN, be a continuous function for all the points
(r,w) in the region that is defined by D = {(t,w):a < T < b,—c0 < w < o} where a and b
are finite real numbers, k=1,2,3,... If there exists a constant £ such that the inequality,

|If(z, w()) - f(z,w* @] < £[lw(@® - w @],
holds for all (z,w), (z,w*) € D. Then, for any real number w, € R ,there exists a unique
solution w(t) of the problem where, the mapping w(z) is differentiable and continuous for all
(z,w(t)) € D and the constant ¢ is called Lipschitz constant.

3. Proposed RKM-Method for Solving Twelves-Order ODEs
The constructed s-stages RKM-integrator for solving the quasi-linear twelves-order ODESs
in Equation (1) with ICs (2) has the forms as follows:

hl () a
Zns1 —Z hlzz bk, @)

i=

10 ﬁl 0+1) R )
Znn = ) — i+ R Z bk, 5)
0 ) i=1
piztd &
Zny1 = ?, + hlo bik;, (6)
i=0
8 1 (l+3)
2 = n h9z bk, 7)
0
fl (L+4)
=) — +h82 bk (8)
i=0 i=1
6 1 (l+5)

a
A= YWY b ©

i=0 i=1
_® 5 Ry (l+6) R '
Znir = TR ) bk, (10)
i=0 i=1
4 A P a
Riz*7 .
L n
e TR hsz bik;, (11)
i=0 i=1
3 o~ (i a
hlz(l+8) .
,® _ n 7
D= kY bk, (12)
i=0 i=1
2 fi, (i+9 a
20 =) kB bk, (13)
(10) l=10 Rizg t10 "zlzla -
Zny1 = Ai=o— T h Liz1 bik;, (14)
N =20 4R Y bk, (15)
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k1 = ﬁ(}(n,zn) (16)
and, k; = F (xn + iR, 2L % +R2 S5 k) (17)

4. Construction Proposed s-stages RKM-Method
In this section, the construction of the proposed RKM method is introduced To construct
this method, it may derive the order conditions of the method.

4.1 Derivation of the Order Conditions

This subsection is to introduce the finding of the order conditions(OCs) and then, the
parameters of the proposed numerical RKM-integrator. In the following, three steps are used to
drive the order conditions
Step I: Using Maple software, expand the equations (4)-(15) using the approach of Taylor-series
expansion.
Step 1I: Expand Taylor-expansions of the derivatives of the solution y(x) of the problem by
using the approach of Taylor-expansion.

y®(x+h);i=01,..,11. (18)

Step I11: Compare the Taylor-expansions-serious of Equation (18) in steps I- Il to find the order
conditions of this proposed method.

In the following subsection, we will derive the OCs of the derived RKM method by using maple
software.

4.1.1 The Order Conditions
OCs of y

1
; _zb _—zb 19
Z %™ 479000000’ 0% = 6227000000’ 0j¢ 43589000000( )

OCs of y’
Zb Z - 7795 1 Zb
, Y™ 40000000 ’ 1% = 279000000 ’ byci ~ 3114000000’ 1j¢
j= j=1 j=1 j=1
1
— 20
14530 000000 (20)
OCs of y"
zsz Z 2]l=—z 2]1 22050000 szj
’ 360000’ 3990000’ ~ 23950000
J:
! Zb (21)
~ 103780000’ 4 2j% = 363240000
OCsof y

51~ o 3y
£,7% " 362880’ LV T 3628800° L 7T T 19958400
Jj= J= =
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St - S - S
/.73 T 79833600° £l "3 T 79833600 * Ll 3 C
j=1 j=1 j=1

~ 259459200 (22)
OCs of y™®
S 1 S 1 S
b -=—,Zb - -=—,Zb Y R — Zb
Z Y~ 51891840’ Ly 4% = 121080960 - 460 259459200 4j¢
J= J= J=
- srovision 3 e = ooy e = v
~ 518918400’ 2 : 4% = 19958400 2 : 4% = 20320° L. 9°
J= J=
1
~ 362880’ (23)
OCs of y®)
S 1 S
b -=—,Zb ; Eb —,
Z 5/ = 5040 ' £u ¥ T 30320° 5i% = 181440
j=1 j=1
S
st.cs:—,2b5.cf}:—, 5-c. :;’
/.75 T 504800 4LV T 16632007 4. T T 3991680
j=1 j=1 j=1
S 1 S
Zb5fci6 = 8648640'Zb5jci7
j=1 j=1
= 17297280 (24)
OCs of y(®
> 1 < 1
_ 2=
Zbﬁf 720" 2. Pei¢ = 5040° Zb 6i% = 20160’
J ]=
Z Z = Z 1
c; ~ 60480 ’ 6 = 151200’ it = 332640'
b z Zb - 25
Z 6j¢ 665280 6i7 665280 6j¢ 1235520 (25)
OCs of y(7)
2 7T 120 Z 7% = 720" Z 7% = 3530 Z 7% = §730° Zb”
Jj=
15120 Z 7€l ~ 30240’ Z 7t = 55440 Zb”
s 3y~ 0 :
_95040', ’ 7460 = 154440’, s 7% = 340240 (26)
J= J=

OCs of y®
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b Z Z Zb 2

Z 8/ = g4 8/~ 120 8% = 350° 8% ~ 340’ 8% = 1680’
5 _

Z “ = 3024’ Z 0iCt ~ 5040’ Z 8jC7 ~ 7920 Z 8jCt ~ 11880’ Z 8j¢

_ L Zb 10 L. @7
17160’ 817 T 24024

j=1

OCs of y®
S

S S S
YT AURE B YW EE P
)64 J 24" £ S i ~ 120 _ J7H 210
j=1 j=1 j=1

S
5 6 _ =
’Zb‘ﬁcl‘— Z i‘ﬂz o5l 7202 o5t 9902 9“_1320
]= =
10
Z T 1716’ Z 0jCi ~ 2184 (28)

OCs of (10)
S S S
1 5 1 3 1 . 1
wa] zbchi =€:Zb10jci =§, bigjc; =%'zb10jci =%'
j=1 j=1 j=1
S S S
6 1 7 1 8 1
!Zblojcl 42’ Zb10jci = %'Z bygjci 72 :Z biojc; 90’
j=1 j=1 J=1 J=1
S S S
1 1 )
Zblojcl 1_10'Zb10jci 156'2 biojc;
j=1 j=1 j=1
_1 29
182 (29
OCs of y(t1)
S S S S
1 1 1
an] = 1;zb111 Ci =5 b11} G =3 b11] G 7
j=1 j=1 j=1 j=1
> 1% 1w 1% 1
Zblljcl?-:gizbll] Ci =5 bi1j¢; 7 b11jcl7 3
j=1 j=1 j=1
S S S S
10 1 11 1 12
b11j b11] :E' blljci ~ 11 by1j ¢ =12’ by1j ¢
j=1 j j=1 j=1

Z b11] ¢’ = Z b11] =5 (30)

4.2 Derivation of the Proposed RKM Method
The algebraic equations of OCs in equations (19)-(30) have been solved using the Maple

software, consequentially, we get the parameters of the proposed RKM-integrator in equations
(4)-(15) which is used to solve the ODE in the Equation (1) or (3) with ICs (2) (as in Table 1)
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Table 1: The Parameters of the RKM Method for Solving Twelve-Order ODEs
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C A
l 0 0 0 0 0
55 2 1
91
m_ﬁ E 0O 0 0O 0 0O
55 q1 1 1
119 " 238 —z z 9 0 00
1 q 1 1 1
A 272 2 00
1 q, 1 1 1 1
272 272 272 00
1 1 1 1 1 1 0
2 2 273 273
2 2
5 5
41921 41921
92133 184266
18763321+ 930299¢, 13398059+ 8835947q,
b, = 40843890 503741310 b, = 40843890 3022447860
17118763321 930299q, |’ 27113398059 8835947¢,
40843890 503741310 40843890 3022447860
959  221q, 2439  1397q,
78245 31298 312980 312980
959 221q, 2439 1397q,
78245 31298 312980 312980
1 1
5 5
41921 41921
737064 4422384
24880841 N 8917889q, 23947867 N 641793q,
b = 163375560 6044895720 b, — 490126680 1343310160
37| 24880841 8917889q, |’ 4 23947867 641793¢q, ’
163375560 6044895720 490126680 1343310160
1563 N 219¢q, 687 N 71q,
625960 156490 1251920 250384
1563  219q, 687 71q,
625960__156490 1251920 250384
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1 1
T 60 300
41921 41921
35379072 353790720
46291033 N 16765457q, 44760971 N 32426443q,
b. = | 3921013440 145077497280 p. = | 19605067200 1450774972800
5 46291033 16765457q, |’ 6 44760971 32426443q, |’
3921013440 145077497280 19605067200 1450774972800
249 189¢, 927 N 69q,
2503840 5007680 50076800 50076800
249 189¢, 927 69q,

50076800 50076800

2503840 5007680

1

1800
41921

4245488640
10301532751 1243816093¢,

+
b = | 27996035961600 = 345284443526400
7 10301532751 1243816093q,

27996035961600 | 345284443526400
429 3q,

100153600 2503840
429 3q,

100153600_F2503840

1

12600
41921

59436840960
1185432303403 858782091499¢q,

bo = 23320697956012800_F1725731648744947200
8 1185432303403 858782091499¢,

23320697956012800 1725731648744947200
1647 789¢,

1402150400 1402150400
1647 789q,

1402150400 1402150400

1

907200
41921

17117810196480
31394760943704779 7581274614247769q,

be = 47555194140734005555200 1173028122138105470361600
9~ 31394760943704779 7581274614247769q>

47555194140734005555200  1173028122138105470361600
1887 434,

22434406400 897376256
1887 43q,

22434406400 897376256
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1

/ 9072000 \

41921

342356203929600
7225408562621017999 2617210880852648471q,

bin = 113181362054946933221376000 4187710396033036529190912000
10 — 7225408562621017999 2617210880852648471q, ’

113181362054946933221376000  4187710396033036529190912000
4443 639¢,

\ 224344064000 56086016000 /

4443 639¢,
224344064000 56086016000

1

99792000
3811

684712407859200
831452882207968586347 602343109566116670251q,

148154402929925535586781184000_F10963425816814489633421807616000
831452882207968586347 602343109566116670251q, ’

148154402929925535586781184000 10963425816814489633421807616000
20997 1101q,

4935569408000 448688128000
20997 1101q,

4935569408000 448688128000

by =

1

1197504000
3811

16433097788620800
191356347371442429557807 7701523961547367176767q,

4231289747678673296358470615040004_1739530229601232355169593475072000
191356347371442429557807 7701523961547367176767q,

423128974767867329635847061504000 1739530229601232355169593475072000
8277 273q,

9871138816000 564065075200
8277 273q,

98711388160004_564065075200

by, =

Where q; = V10434, q, = /3.

5. Implementations
We have examined the constructed RKM method that is used to solve some of the different
examples. Moreover, the numerical results of these examples are shown in Figure 1.
Example 5.1 (Linear ODE)
w2 (x) = w(x), 0<x<bh,
with the ICs: wU(0) = (=1)/ forj=0,1,...,11.
The analytical solution is w(x) =e™*,b = 1.
Example 5.2 (Homogenous ODE)
w12 (x) = w(x), 0<x<bh
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with the ICs: w(0) = (=1)/ . If j is an odd number and equal to 0 otherwise where,
j=0,1,...,11, where the exact solution is
w(x) = sin(x),b = 7.

Example 5.3 (ODE of variable-coefficients)

W(ll)(x) = (4096x'% — 135168x1° + 1520640x® — 7096320x° + 13305600x*
—7983360x% + 665280) w(x); 0 < x < 2.

with the ICs: w(0) =1, wU(0) =0 forj=1,2,...,11, and the analytical solution is given

by w(x) = e " b =2,

Example 5.4 (Linear System of ODES)

WD () = wy () = Wy (x) +
1 1+x
Wi (x) = w; (%) + 479001600 wi3(x) — e™* — 7%,

)

with the ICs: w2 (0) = 0, w(0) = 1 for j—1 =i =0,2,4,6,8,10

k+1)!
w0 = (-

,k=0,1,..,11.
The exact solution is w,(x) =e™* +e ™™ ,w,(x) = ﬁ,b = 2.
Table 1: A Comparison between the Absolute Errors of Numerical Solutions of the Proposed

RKM-Method for Solving ODEs of Twelve-Order Versus Classical RK method in addition to
the Analytical Solution for Examples 5.1

X; Exact Solutions Absolute Errors of Absolute Errors of RK
RKM method method
0 1.000000000000000e+00 6.91022303215157e-15 8.8078282377383712e-3
0.05 9.512294245007140e-01 6.91022303215157e-14 8.7286373479734723e-3
0.1 9.048374180359595e-01 6.91043521435157e-12 9.3145528995995836€e-3
0.15 8.607079764250578e-01 1.110223024625157e-12 9.5073738110011116e-3
0.2 8.187307530779818e-01 1.110223024625157e-9 8.5949411223301215e-3
0.25 7.788007830714049¢-01 3.330669073875470e-9 8.1934848930202112¢e-3
0.3 7.408182206817178e-01 1.110223024625157e-7 9.7488736289111011e-3
0.35 7.046880897187134e-01 6.994405055138486e-7 9.2848845934237851e-3
0.4 6.703200460356393e-01 3.419486915845482¢-6 8.4173476363527772¢e-3
0.45 6.376281516217732e-01 1.392219672879946¢e-6 8.3922381128387878e-3
0.5 6.065306597126334e-01 4.909406214892442¢e-5 8.1182348738332773e-4
0.55 5.769498103804867e-01 1.534661286939354e-5 8.7646467373376261e-4
0.6 5.488116360940264e-01 4.343525539241000e-5 6.9874743435255366€-3
0.65 5.220457767610160e-01 1.130751048350476e-4 6.66536362572780476e-3
0.7 4.965853037914095e-01 2.741457061361530e-4 6.76743434514565760e-3
0.75 4.723665527410147e-01 2.250938655583127¢-4 5.66552509311831271e-3
0.8 4.493289641172216e-01 1.751143086303352¢-3 6.95637176262313521e-3
0.85 4.274149319487267e-01 2.786537667276434e-3 6.76672786534111212¢e-3
0.9 4.065696597405991e-01 2.512765244297668e-3 7.42976512765211318e-3
0.95 3.867410234545012e-01 1.750918463363360e-3 7.36737363782828604¢e-3
1 3.678794411714423e-01 1.937836446863628e-3 7.73737377736671125¢e-3
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Figure 1: (a) Numerical Solutions of Proposed RKM-Method versus Classical RK Method in
addition to the Analytical Solutions, (b) Log Errors of Numerical Solutions Proposed RKM
Method versus Log of Numerical Solutions Using Classical RK Method for Solving ODEs of
Twelve-Order for the Examples 5.1, 5.2, 5.3, and 5.4

6. Discussions And Conclusion

In this study, we developed a direct numerical RKM method for solving the quasi-linear of
special ODE of twelve-order. The generalized RKM integrators for solving ODEs of the order
less than 12" are a novel aspect of this work. The purpose of this study is to develop an explicit
direct integrator for a particular class of 12"-order ODEs. We have examined the effectiveness
of the proposed RKM method using a variety of quasi-linear, 12!"-order ODE examples. The
numerical results of the ODEs in Table 1 show that the direct RKM method is to be more
accurate and efficient than the RK method, while Figure 1-(b) demonstrates that the proposed
method yields that the numerical solutions and the analytical solutions are identical. Moreover,
Figure 1-(b) shows the efficacy of the proposed method is better than the indirect RK method
by plotting x against the log of absolute errors of the numerical RK and RKM methods. For this
purpose, we can infer that RKM is more accurate and effective than the classical RK method
based on the numerical outcomes that are produced by the RKM method. Finally, the
constructed RKM method is more cost-effective in terms of computational time than existing
indirect methods.
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