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Abstract  
     The traditional shortest path problem is mainly concerned with identifying the 

associated paths in the transportation network that represent the shortest distance 

between the source and the destination in the transportation network by finding 

either cost or distance. As for the problem of research under study it is to find the 

shortest optimal path of multi-objective (cost, distance and time) at the same time 

has been clarified through the application of a proposed practical model of the 

problem of multi-objective shortest path to solve the problem of the most important 

25 commercial US cities by travel in the car or plane. The proposed model was also 

solved using the lexicographic method through package program Win-QSB 2.0 for 

operational research applications. 
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لمدن التجارية في أمريكابين ا طريق أمثلاستخدام نمهذج المسار الأقصر متعدد الأهداف لإيجاد   
 

 محمد سعد إبراهيم
، بغجاد، العراقوزارة التعليم العالي والبحث العلمي  

   

 الخلاصة
قرر طريق التقليجية أساساً بتحجيج الطرق المترلة في شبكة النقل والتي تمثل أقرر مدافة تهتم مذكلة أ     

بين المرجر، ومكان الهصهل في شبكة النقل عن طريق إيجاد إما الكلفة أو المدافة. أما فيما يخص مذكلة 
، المدافة والهقت( في البحث قيج الجراسة فهي تتمثل بإيجاد أقرر طريق أمثل متعجد الأهجاف لكل من )الكلفة

آن واحج وقج تم تهضيح ذلك من خلال تطبيق نمهذج عملي مقترح لمذكلة أقرر طريق متعجد الأهجاف لحل 
كما وتم حل النمهذج المقترح  ،امريكية عن طريق الدفر بالديارة أو بالطائرةتجارية مجينة  52مذكلة أهم 

الخاص بتطبيقات بحهث  (Win-QSB 2.0)هز باستخجام الطريقة المعجمية من خلال البرنامج الجا
 العمليات.

1. Introduction and Reference Review 

     Multi-objective combinatorial optimization MOCO, also called multi-criteria optimization, is a 

well-studied branch of optimization, where the goal is to find optimal solutions based on multi-

objective. Many real-life problems can be represented as networks, such as transportation networks, 

communication networks, pipeline distribution networks, and neural networks. The primary aim of 

these network models is to optimize the performance with respect to predefined objectives.  Multi-

objectives such as optimization of cost, distance, time, delay, risk, reliability, quality of service and 

environment impact etc. may arise in such problems. This problem can be formulated as a multi-

objective shortest path problem MOSPP. There are many studies to treating the problem of the multi-
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objective shortest path, where White [1] used the multi-objective linear programming model to 

identify the optimal path with an effective set of efficiently policies and paths. Arthur [2] also studied 

a range of approximate methods of Pareto optimal paths in multi-objective shortest path problems. 

John et al. [3] proposed an interactive method to generate an approximation of the non-inferior 

solution set for two objective shortest path problems, the goal of this approach is to assist the decision 

maker DM in selecting the preferred or best compromise solution from among the noninferior 

solutions. Coutinho-Rodrigues,         , and Current [4] presented a proposal for a new interactive 

approach to search for unsupported non-dominated solutions (lying inside duality gaps) based on the 

k-shortest path procedure. Guerriero and Musmanno [5] presented a method for finding an optimal 

solution for a multi-criteria shortest path problem by using a class of labeling methods to generate a 

complete set of Pareto optimal path-length POPL vectors from an origin node (source) to all other 

nodes in a multi-criteria network. Tarapata [6] compared the effectiveness of solving the shortest 

multi-objective path problem defined as a mathematical programming problem by using the CPLEX 

7.0 solver, and the multiple-weighted graph problems using the modified Dijkstra's algorithm. Raith 

and Ehrgott [7] were able to make an effective comparison of the different strategies to solve the bi-

objective shortest path problem of complex networks (i.e., many nodes and arcs). Paixão and Santos 

[8] studied traditional labeling technology to solve the multi-objective shortest path problem, taking 

into account the presence of more than a cost of arcs. Duque, Lozano, and Medaglia [9] presented a 

precise iterative method based on the implicit census to solve a bi-objective shortest path problem to a 

network consist of 1.2 million nodes and 2.8 million arcs. Thomas, Twan, and Wilcovanden [10] 

presented a new fully polynomial time approximation scheme for the multi-objective shortest path 

problem with non-negative and integer arc costs. 

1.1. Research Problem 

The problem of this paper is how to choose the (DM or businessman) for the shortest possible way to 

travel by car or plane among the most important 25 US commercial cities from Los Angeles to New 

York City, taking into consideration achieve three objectives, (cost, distance and time. The goal of 

this research is to find an optimal multi-objective solution to the problem of the shortest path to the 

most important US commercial cities, while making a comparison between the preference of travel by 

car or plane, taking into account the minimization of the objectives of cost, distance and time together.  

2. Multi-Objective Linear Programming Problem MOLPP 

     MOLPP is one of the most important mathematical optimization models and is an extension of 

traditional one-objective programming, where consideration is given more than one objective is sought 

by the DM to achieve [11]. Often these objectives are conflicting with each other, and these ones of 

the most important difficulties facing us in the multi-objective optimization models. The concept of 

the optimal solution is no longer logical. In general, there is no possible solution that can optimize all 

objective functions at the same time, where Zeleny [12] has demonstrated in a very expressive manner 

the fundamental differences between traditional single-objective optimization models and multi-

objective optimization models. The multi-objective linear programming model can now be represented 

as follows [13]:  

 2.1   
1 2( ) (( ( ), ( ), ... , ( ))

. .

nMOLP Min x z x z x z x

s t x D

  


 

     Where the represents: 2n   the number of objective functions;  1 2, ,..., rx x x x  the vector of 

decision variables; D Ax b   a space of feasible solution; and Z(x) vector of objective functions, 

respectively. The solution obtained from the multi-objective linear programming model is a set of non-

dominant solutions called the Pareto set PS. 

2. Shortest Path Problem SPP 

     Let's consider that we have a flow network that has a certain starting point and a certain endpoint 

and that the arrows that connect the network points take many paths to reach the starting point and the 

access point. We try through the shortest path problem, to get the shorter of these arrows or lines that 

connect the starting point and the end point. For example, this model is used to obtain the shortest 

distance or path that can be taken between one city and another through a network of paths. The length 

of each arc is a function of that distance, travel time, cost of travel or any other measure. In other 

words, we try to find the shortest path between the start and access point. One of the most important 

issues in network flow is that of assigning the shortest path between the source node and the 

https://www.sciencedirect.com/science/article/pii/S030505489800094X#!
https://www.sciencedirect.com/science/article/pii/S030505489800094X#!
https://www.sciencedirect.com/science/article/pii/S030505489800094X#!
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destination node. Consider that we have the network composed of n the node (1, 2, …,n) so that each 

arc (i, j) corresponds to a non-negative number   ijd , called distance, or transit time from node i to 

node j. If there is no direct route between i and j, the distance is:   ijd   . The distance   ijd  can vary 

from a distance   jid  (i.e. ij jid d (. The problem lies in how to find the length of the shortest path, 

and the shorter route, from the source node 1, to the destination node n. As one way to solve this 

problem, we can interpret it as a network represented by a guided graph G(V, E), where V represents 

the set of headers (nodes) and E represents the set of links (arcs). The link between node i and node j is 

expressed by (i, j)E; and   ijd  is the cost of the link between i and j; as well as  
pq
ij

x  (whereas 

0   1
pq
ij

x  ) represents the amount of traffic from node p  V  to node q  V by routing it through (i, j)

E
 
[14]. 

2.1. A General Model of Single Objective Shortest Path Problem SOSPP  

Generally, the problem of finding the shortest path can be formulated as a linear programming 

problem as shown below: 

 ,
( ) ij iji j E

Min Z x d x


        3.1.1  

   : , : ,
. . 1,ij jij i j E j j i E

s t x x if i p
 

        3.1.2  

   : , : ,
0, ,ij jij i j E j j i E

x x i p q V
 

            3.1.3  

 0 1, , .ijx or i j E                  3.1.4  

     ijx  and ijd  is the decision variable and the link cost (i, j), respectively [14]. The equation (3.1.1) 

represents the objective function that reduces the cost of the path from the node p to node q and ijx  is 

the amount flow from node p to node q through (i, j). Equations (3.1.2) to (3.1.4) are constraints of the 

model, where equations (3.1.2) - (3.1.3) are represented the conditions for maintaining flow. And 

Equation (3.1.2) represents the maintenance of flows in the source node, node p. The difference 

between the amount of traffic received and the amount of traffic issued, 

   : , : ,ij jij i j E j j i E
x x

 
  , is equal to one. Here, the amount of outgoing traffic at node p 

equals one. Equation (3.1.3) maintains flows at the intermediate node i, such that i ≠ p, q. The amount 

of traffic issued at the node i, 
 : , ijj i j E

x
 , equal to the amount of incoming traffic at the node i, 

 : , jij j i E
x

 . The equation (3.1.4) represents the range of decision variables ijx . At the 

destination node, node q, the condition to maintain flows is, 

   : , : ,
1,ij jij i j E j j i E

x x if i q
 

         3.1.5  

     The equation (3.1.5) must be met. However, Equation (3.1.5) is discounted using equations (3.1.2)- 

(3.1.3). Therefore, Equation (3.1.5) is guaranteed by Equations (3.1.2) and (3.1.3) [14]. 

4. Multi-Objective Shortest Path Problem MOSPP 

     The MOSPP is one of the most important and common problems. The problem is how to find the 

shortest path of any network based on a certain set of objectives, like cost, time, distance, etc. 

Consider that the DM looks at how to choose the feasible shortest path to travel by car or plane to the 

most important 25 US cities, taking into consideration three main objectives: cost, distance and time. It 

can be said that the main objective of the DM is to find an efficient solution for MOSPP to find an of 

the most important US commercial cities. 

4.1. The Proposed Mathematical Model to Solve MOSPP 

     In this paragraph, a proposed mathematical model will be formulated to solve MOSPP based on the 

original model of SOSPP mentioned above in paragraph 3.1. Let's consider that there are three 

objectives that the DM seeks to achieve together of travel using the car (the first, second and third 

objectives) is to minimization (cost Z1, distance Z2, and time Z3), respectively. There are also three 

other objectives that the DM seeks to achieve in order to travel with the aircraft (Target 1, 2 and 3): 
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minimization (cost W1, distance W2, and time W3), respectively. The mathematical model can now be 

formulated for the MOSPP as shown below:  

Minimized of all objective functions 

1: ij ijall arcs
Cost functionby car Z c x                    4.1.1  

2: ij ijall arcs
Distance functionby car Z d x                    4.1.2  

3: ij ijall arcs
Time functionby car Z t x                    4.1.3  

                            ∑                                  4.1.4  

     n                          ∑                                 4.1.5  

                            ∑                                  4.1.6  

 

 

 

 

. . 1, 4.1.7

0, 4.1.8

1, 4.1.9

0 1. 4.1.10

ij jiarcs out arcs in

ij jiarcs out arcs in

ij jiarcs in arcs out

ij

s t x x Origin node (i)

x x Intermediate nodes

x x Destination node

x

 

 

  

 

 

 

 
     

     There are many approaches used to solve the above model. We will use the lexicographic method 

that described in the below. 

4.2. Lexicographic Method 
     In this method, the (DM) has to arrange the objective functions according to its importance. The 

preferred solution of the problem (2.1), in this case, is the solution that minimizes the vales of the most 

important objective functions as  1 2( ), ( ), ... , ( )nz x z x z x which is a vector of objective functions which 

is arranged according to the importance of the functions of the (DM), such that z1(x) is the most 

important objective function among the other and z2(x) is the objective function followed by the 

importance and so on [15]. The first problem to be solved is: Find a vector that minimizes,                                                                                         

 1( )
4.2.1

. .

z x

s t x D




 
 

     Where x D  represents a feasible region solution, and *
1x  is a solution of this problem as well 

* *
1 1 1( )z x z  ; if this solution is unique then *

1x  will be a solution to a problem (2.1), but if there is 

more than one solution, the second problem that must be solved is: Find a vector x  that minimizes,   

 
2

* *
1 1 1

( )
4.2.2

. . : ( )

z x

s t x D z x z




  

 

     Let *
2x  represents a solution to this problem and * *

2 2 2( )z x z . Now, if  *
2x  is a unique solution, the 

problem (2.1) has this solution, otherwise, this frequency is repeated until we get a unique solution to 

one of these problems or complete all the objective functions and *
nx , which is the solution to the 

problem n, is the solution to the problem (2.1). In general, the problem that must be resolved are: Find 

a vector x that minimizes, 

 
*

( )
4.2.3

. . : ( ) , 1,2,..., 1.

jz x

s t x D z x z j




    

 

     And since the steps of the solution are stopped when we obtained a unique solution of the problem 

j, this solution is the solution to the problem (2.1), and the functions which have the ranks are less than 

j
 
neglected. 

5. Application for Real Case Study 
     Consider that, there is a businessman who wants to take the shortest path by using the car or plane 

of the most important 25 US commercial cities to reach New York City from the hometown city Los 

Angeles, taking into account the minimization (cost, distance and time) together. Cost, distance and 

time data were collected among the major US commercial cities (https://www.distance-cities.com/). 
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Figure-1 illustrates the network diagram of the link among the most important 25 US commercial 

cities. Table-1 shows the names of the most important US commercial cities; Table-2 shows the cost, 

distance and time of travel by car, and finally, Table-3 shows the cost, distance and time of travel by 

plane.  

 
Figure 1- Map of networking among the top 25 US commercial cities 

 

Table 1- Names of the most important of (25) American commercial city 

Node City Node City 

1 Los Angeles, California 14 St Louis, Missouri 

2 Riverside, California 15 Chicago, Illinois 

3 San Diego, California 16 Detroit, Michigan 

4 Phoenix, Arizona 17 Atlanta, Georgia 

5 San Jose, California 18 Tampa, Florida 

6 San Francisco, California 19 Miami, Florida 

7 Portland, Oregon 20 Charlotte, N.C. 

8 Seattle, Washington 21 Washington, D.C. 

9 Washington, State 22 Pittsburgh, Pennsylvania 

10 Denver, Colorado 23 Philadelphia, Pennsylvania 

11 Dallas, Texas 24 Boston, Massachusetts 

12 Houston, Texas 25 New York, N.Y. 

13 Minneapolis, Minnesota   
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Table 2- Cost (C) in dollars ($), distance (D) in miles (Miles) and time (T) in minutes to travel among 

the most important (25) American commercial cities by using the car 

Start - 

Destination 

node 

Travel using the car Start - 

Destination 

node 

Travel using the car 

Cost Distance Time Cost Distance Time 

1 – 2 3151 57.3 60 11 – 17 72.01 782 672 

1 – 3 14.67 120 124 12 – 14 69.90 779 726 

1 – 5 41.33 340 324 12 – 17 72.93 793 673 

1 – 7 113.17 963 882 13 – 14 52.92 559 505 

2 – 3 12.24 101 115 13 – 15 40.64 408 371 

2 – 4 34.83 326 287 14 – 15 28.16 297 280 

2 – 10 108.47 984 859 14 – 17 50.92 554 505 

3 – 4 38.28 355 323 14 – 22 60.64 602 545 

4 – 8 153.10 1421 1306 15 – 16 28.53 283 257 

4 – 10 83.41 821 759 16 – 17 69.82 733 674 

4 – 11 98.24 1065 910 16 – 20 64.44 639 621 

4 – 12 108.75 1176 994 16 – 22 31.07 289 270 

5 – 6 5.82 48.4 58 17 – 18 43.42 456 380 

5 – 10 142.94 1273 1122 17 – 19 62.89 663 561 

6 – 7 74.67 635 599 17 – 15 69.48 716 629 

6 – 13 217.21 1966 1740 17 – 20 23.33 244 222 

7 – 8 19.90 173 198 18 – 19 26.74 280 247 

7 – 9 22.66 269 289 18 – 20 55.71 580 520 

8 – 9 5.12 103 122 20 – 21 40.25 399 380 

9 – 13 175.27 1585 1401 20 – 22 46.56 447 419 

10 – 9 140.04 1299 1148 21 – 23 15.49 139 148 

10 – 11 74.48 791 724 22 – 21 26.72 242 238 

10 – 13 90.75 914 774 22 – 23 33.78 304 283 

10 – 14 80.30 850 718 22 – 25 40.65 371 354 

10 – 15 99.78 1004 858 23 – 24 32.84 310 321 

11 – 12 21.51 239 214 23 – 25 10.30 96.7 109 

11 – 13 93.71 942 840 24 – 25 22.67 215 229 

11 – 14 56.69 631 582     
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Table 3- Cost (C) in dollars ($), distance (D) in miles (Miles) and time (T) in minutes to travel among 

the top 25 US commercial cities by using the plane 

Start - 

Destination  

node 

Travel using the airplane Start - 

Destination  

node 

Travel using the airplane 

Cost Distance Time Cost Distance Time 

1 – 2 300 49 36 11 – 17 126 721 99 

1 – 3 182 112 31 12 – 14 239.5 679 96 

1 – 5 121.5 306 50 12 – 17 103 702 95 

1 – 7 142 825 117 13 – 14 235.5 466 68 

2 – 3 385.5 86 40 13 – 15 79.5 355 66 

2 – 4 153.5 309 50 14 – 15 190.5 262 45 

2 – 10 216 794 105 14 – 17 64.5 467 67 

3 – 4 124 299 50 14 – 22 121.5 559 97 

4 – 8 232 1114 156 15 – 16 122 238 45 

4 – 10 135 586 80 16 – 17 134.5 596 90 

4 – 11 107.5 886 115 16 – 20 229.5 504 78 

4 – 12 222.5 1016 128 16 – 22 211 205 37 

5 – 6 190.5 42 35 17 – 18 100.5 416 62 

5 – 10 155.5 929 122 17 – 19 121.5 604 88 

6 – 7 118 535 76 17 – 15 123 588 88 

6 – 13 221 1585 186 17 – 20 214.5 226 42 

7 – 8 152.5 145 42 18 – 19 101.5 205 39 

7 – 9 143.5 139 40 18 – 20 243 510 78 

8 – 9 117 39 35 20 – 21 159 329 54 

9 – 13 231 1360 161 20 – 22 265.5 363 58 

10 – 9 178.5 983 140 21 – 23 297 124 34 

10 – 11 81 662 96 22 – 21 108 190 40 

10 – 13 112 700 93 22 – 23 210.5 258 46 

10 – 14 111 797 100 22 – 25 216 316 55 

10 – 15 105 920 117 23 – 24 133.5 271 49 

11 – 12 171.5 225 42 23 – 25 208 81 23 

11 – 13 96.5 862 116 24 – 25 110 190 48 

11 – 14 205.5 548 78     

 

5.1. MOSPP by Using Car or Airplane 

     Based on the model proposed in paragraph 4.1 and using the above Tables-(2-3) that mentioned (2 

and 3), a multi-objective linear programming model will be built to solve the shortest path problem 

among the most important 25 US commercial cities by traveling either by car or by plane as shown 

below: 

 

 

 

1 1,2 1,3 1,5 1,7 24,25

2 1,2 1,3 1,5 1,7 24,25

3 1,2 1,3 1,5 1,7 24,25

  
.

57.3

(x) 7.15 14.67 41.33 113.17 ... 22.67 5.1.1

(x) 120 340 963 ... 215 5.1.2

(x) 60 124 324 882 ... 229 5
Travel by Car

Z x x x x x

Minimization Z x x x x x

Z x x x x x

     

     

       1.3






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 

 

 

 

1 1,2 1,3 1,5 1,7 24,25

2 1,2 1,3 1,5 1,7 24,25

3 1,2 1,3 1,5 1,7 24,2

  

5

(x) 300 182 121.5 142 ... 110 5.1.4

(x) 112 306 825 ... 190 5.1.5

(x) 36 31 50 117 ... 48 5.1

9

.6

4
Travel by Plane

W x x x x x

Minimization W x x x x x

W x x x x x

      


     


     

 

Subject to: 

   

   

   

   

1,2 1,3 1,5 1,7 1,2 2,3 2,4 2,10

1,3 2,3 3,4 2,4 3,4 4,8 4,10 4,11 4,12

1,5 5,6 5,10 5,6 6,7 6,13

1,7 6,7 7,8 7,9 4,8 7,8 8,9

1 5.1.7 , 5.1.8

5.1.9 , 5.1.10

5.1.11 , 5.1.12

5.1.13 , 5.1.14

x x x x x x x x

x x x x x x x x x

x x x x x x

x x x x x x x

x

      

      

   

    

   

   

7,9 8,9 10,9 9,13 2,10 4,10 5,10 10,9 10,11 10,13 10,14 10,15

4,11 10,11 11,12 11,13 11,14 11,17 4,12 11,12 12,14 12,17

6,13 9,13 10,13 11,13 13,14 13,

5.1.15 , 5.1.16

5.1.17 , 5.1.18

x x x x x x x x x x x

x x x x x x x x x x

x x x x x x

         

       

      

 

   

 

15

10,14 11,14 12,14 13,14 14,15 14,17 14,22

10,15 13,15 14,15 17,15 15,16 15,16 16,17 16,20 16,22

11,17 12,17 14,17 16,17 17,18 17,19 17,20 17,18 1

5.1.19

5.1.20

5.1.21 , 5.1.22

5.1.23 ,

x x x x x x x

x x x x x x x x x

x x x x x x x x x

     

      

        

   

   

 

8,19 18,20

16,20 17,20 18,20 20,21 20,22 20,21 22,21 21,23

14,22 16,22 20,22 22,21 22,23 22,25 21,23 22,23 23,24 23,25

23,24 24,25 22,25 23,25

5.1.24

5.1.25 , 5.1.26

5.1.27 , 5.1.28

5.1.29 ,

x

x x x x x x x x

x x x x x x x x x x

x x x x x



     

       

    24,25 1 5.1.30

 

All decision variables  0  and 1     5.1.31  

     Where: Z1(x), Z2(x), Z3(x); represents the function of (cost, distance and time) respectively, when   

businessman traveling by car, and W1(x), W2(x), W3(x); represents the function of (cost, distance and 

time) respectively, when businessman traveling by plane. The equations from (5.1.7) to (5.1.31) 

represent the constraints of the problem to which we will refer briefly x D . 

5.2. Solve the Model of MOSPP by Using the Car or Airplane 
      In this paragraph, the above model will be resolved by using the package program (Win-QSB 2.0) 

[16]. Firstly, we will solve each objective function individually with the problem constraints as a 

standard linear programming model to obtain the values of Z1(x), Z2(x)
 
and Z3(x), where the travel 

model by using the car; and the values of W1(x), W2(x) and W3(x) for the travel model by using the 

aircraft, respectively. So that we can use the Lexicographic method that mentioned above in paragraph 

4.2 to find the final optimal solution for the travel either by car or by plane and as follows: 

     31 2 ( )( ) ( )
5.2.1 5.2.2 4.2.3

. . . . . .

Min Z xMin Z x Min Z x

s t x D s t x D s t x D

 
  

    
 

 After we solved the models (5.2.1-5.2.3), were obtained the preliminary results shown below, 

3(x) 2536.Z 2 (x) 2864.30;Z 1(x) 297.2099;Z  

     31 2 ( )( ) ( )
5.2.4 5.2.5 4.2.6

. . . . . .

Min W xMin W x Min W x

s t x D s t x D s t x D

 
  

    
 

 After we solved the models (5.2.4-5.2.6), were obtained the preliminary results shown below, 

3 (x) 393.W 2 (x) 2515;W 1(x) 964.500;W  

We will now use the Lexicographic method to obtain the optimal solution of travel by using the car or 

plane as follows:  

 (The final model of travel by car) 
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 

1 1,2 1,3 1,5 1,7 24,25

2 1,2 1,3 1,5 1,7 24,25

3 1,2 1,3 1,5 1,7 24,25

( ) 7.15 14.67 41.33 113.17 ... 22.67

. . (x) 120 340 963 ... 215 2864.30
5.2.7

(x) 60 124 324 882 ... 229 2536

57.3

Min Z x x x x x x

s t Z x x x x x

Z x x x x x

x D

      


       


       
 

 

     After we solving the model (5.2.7), the final optimal solution was obtained for the three objectives 

as shown below, 
*
3 (x) 253 / 42.27 ;6Minutes HZ our*

2 (x) 2864.30 / ;MZ iles*
1 (x) 297.21/ $;Z  

 * * * * *
1,2 2,10 10,14 14,22 22,25, , , , 1.x x x x x  

 (The final model of travel by plane)  

 

1 1,2 1,3 1,5 1,7 24,25

2 1,2 1,3 1,5 1,7 24,25

3 1,2 1,3 1,5 1,7 24,25

( ) 300 182 121.5 142 ... 110

. . (x) 112 306 825 ... 190 2515
5.2.8

(x) 36 31 50 117 ... 48

4

39

9

3

Min W x x x x x x

s t W x x x x x

W x x x x x

x D

      


       


       
 

 

     After solving the model (5.2.8), the final optimal solution was obtained for the three objectives as 

shown below, 

3(x) 393 / 6.55 ;MinutesW Hour2 (x) 2515 / ;MiW les1(x) 964.5 / $;W  

 * * * * *
1,2 2,10 10,14 14,22 22,25, , , , 1.x x x x x  

     The above results show that, if the DM is looking for minimization cost only, the traveling by car is 

the optimal solution; and if the DM is looking to minimization the distance and time, the travel by 

plane is optimal. The optimal path is represented in Table (4).  

Table 4- The optimal path has the minimization of the objective functions simultaneously, for travel 

by car or plane 

City of America 
Optimal 

path 

Travel using the car Travel using the airplane 

Cost Distance Time Cost Distance Time 

Los Angeles, 

California - Riverside, 

California 

1 2 3151 57.3 60 300 49 36 

Riverside, California - 

Denver, Colorado 
2 10 108.47 984 859 216 794 105 

Denver, Colorado - St 

Louis, Missouri 
10 14 80.30 850 718 111 797 100 

St Louis, Missouri - 

Pittsburgh, 

Pennsylvania 

14 22 60.64 602 545 121.5 559 97 

Pittsburgh, 

Pennsylvania - New 

York, N.Y. 

22 25 40.65 371 354 216 316 55 

Total 297.21 2864.3 2536 964.5 2515 393 

 

6. Conclusions 

     In this paper, we have focused on how to solve the problem of the shortest path problem of the 

most important 25 commercial cities in the United State of America with   real data analysis, also how 

to find a final optimal solution that satisfies the DM ambition and obtain the maximum budget 

achieved in terms of the minimization cost, distance and time. Therefore, a multi-objective linear 

programming model was proposed to solve the shortest path problem. This model proved the 

efficiency and effectiveness of solving the problem, were taken into account the objective functions 

(cost, distance and time) the minimization cost only, is the optimal solution when traveling is by car; 

and minimization the distance and time is optimal when the travel is by plane. The lexicographic 

method provided a definitive solution for all objective functions with one optimal path. The use of this 
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type of mathematical model is a new technique that will raise the quality of rational decision making 

in institutions that are interested in logistics transportation and looking for real solutions to the 

problems of multi-objective optimization1 
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