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Abstract  

     This paper aims to introduce the concepts of  𝑒∗-closed, 𝑒∗-coclosed, and 𝑒∗-

extending modules as generalizations of the closed, coclossed, and extending 

modules,  respectively. We will prove some properties as when the image of the e*-

closed submodule is also e*-closed and when the submodule of the e*-extending 

module is e*-extending. Under isomorphism, the e*-extending modules are closed. 

We will study the quotient of e*-closed and e*-extending, the direct sum of e*-

closed, and the direct sum of e*-extending. 

 

Keywords: essential submodule, closed submodule, extending modules, 𝑒∗-essential 

submodule, 𝑒∗-closed submodule,𝑒∗-coclosed submodule, 𝑒∗-extending modules. 

 

 ∗𝑒-المقاسات الموسعة من النمط
 

 1*, وسن خالد2,1 ن هبه ربيع بعنو
 جامعة بغداد, بغداد, العراق  العلوم, قسم الرياضيات, كلية1

 ميسان, العراق  ميسان, جامعة  التربية, قسم الرياضيات, كلية2
 

 الخلاصة  
المقاسات الجزئية المغلقة  ،  ∗𝑒-المقاسات الجزئية المغلقة من النمط    المفاهيمالهدف من هذه الورقة لتقديم        

النمط   من  النمط  و  ∗𝑒-المضادة  من  الموسعة   المغلقة ∗𝑒-المقاسات  الجزئية  للمقاسات  المقاسات  كتعميم   ،
المضادة   المغلقة  تعريف  الجزئية  الورقة  هذه  في  سنقدم  الموسوعة.  المقاسات  المفاهيم  و  برهان    لهذه  مع 

ومتى   ∗𝑒-النمط  أيضا مغلقة من   ∗𝑒-النمط  مثل متى ستكون صورة المقاسات الجزئية المغلقة من    خواصهم
. وسنرى  ∗𝑒-النمط  هي أيضا موسعة  من   ∗𝑒-النمط  تكون المقاسات الجزئية من المقاسات  الموسعة  من  

مغلقة. سندرس مقاسات القسمة لكل   ∗𝑒-النمط  انه تحت تأثير التشاكل فأن  صفة المقاسات  الموسعة  من  
 . و الجمع المباشر لهما  ∗𝑒-النمط من و المقاسات الموسعة   ∗𝑒-النمط من المقاسات الجزئية المغلقة من 

 
1. Introduction 

     In this work 𝑀  is a right module over a ring 𝑅  with identity. 𝐸(𝑀)  is the injective 

envelope of 𝑀 . When 𝑆 + 𝑇 = 𝑀  implies 𝑇 = 𝑀  for each 𝑇 ≤ 𝑀 , 𝑆  is called a small 

submodule of 𝑀, symbolized by 𝑆 ≪ 𝑀. See [1] and [2]. If 𝑆 ∩ 𝑇 ≠ {0} for each 0 ≠ 𝑇 ≤ 𝑀, 
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then 𝑆 is called an essential submodule of 𝑀, see[1] and[3]. A submodule 𝑆  of module 𝑀  is 

closed if  𝑆 has no proper essential extension, see[3]. If every submodule of a module 𝑀 is 

essential in the direct summand, then module is said to be extending. 𝑀  is an extending 

module if and only if each of its closed submodules is a direct summand, see [4]. 

 

     In [5], Ozcan introduced a new type of submodules which defined as  𝑍∗(𝑀) =
{𝑎 ∈ 𝑀| 𝑎𝑅 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙 𝑖𝑛 𝐸(𝑀)}. If 𝑍∗(𝑀) = 𝑀, then 𝑀 is called cosingular. Whilst, in [6], 

Baanoon and Khalid introduced a class of submodules  called 𝑒∗-essential. If 𝑆 ∩ 𝑇 ≠ {0} for 

each cosingular 𝑇  where 0 ≠ 𝑇 ≤ 𝑀 ,  𝑆  is called an 𝑒∗ -essential submodule of 𝑀 ,  

symbolized by 𝑆 ≤𝑒∗ 𝑀 . Also, in [7], the same authors used 𝑒∗ -essential submodules to 

present a new  class of submodules, a generalization of a small submodule,  called  𝑒∗-

essential small. If 𝑆 + 𝑇 = 𝑀  implies 𝑇 = 𝑀  for each 𝑇 ≤𝑒∗ 𝑀 , 𝑆  is called an 𝑒∗-essential 

small submodule of 𝑀 symbolized by 𝑆 ≪𝑒∗ 𝑀. The generalization of the radical submodule 

which is called 𝑒∗-radical denoted by, 𝑅𝑎𝑑𝑒∗(𝑀) and defined as the intersection of all 𝑒∗-

essential maximal submodule of a module 𝑀. Equivalently, 𝑅𝑎𝑑𝑒∗(𝑀) = ∑ 𝑁𝑁≪𝑒∗𝑀 , see [7].  

If each proper submodule of 𝑀 is 𝑒∗-essential small, then 𝑀 is anointed 𝑒∗-hollow, where 𝑀 

is a nonzero module, see [7]. 

 

     As in[8], we will use 𝑒∗-essential and 𝑒∗-essential small submodules to present a new 

generalization of closed, coclosed submodules and extending modules. Namely 𝑒∗ -closed 

submodules,  𝑒∗-coclosed submodules, and 𝑒∗-extending modules, respectively. Moreover,we 

will prove the main properties of these concepts. 

Now, let us present the following proposition that is crucial to our work. 

 

Proposition 1.1. Assume that 𝑀 is a module, {𝐿𝛼}𝛼∈Λ is the collection of 𝑀's independent 

submodules, and 𝐿𝛼 ≤𝑒∗ 𝐿′
𝛼  for each 𝛼 ∈ Λ, where 𝐿′

𝛼  is a submodule of 𝑀 for each 𝛼 ∈ Λ. 

Then ⨁𝛼∈Λ𝐿𝛼 ≤𝑒∗ ⨁𝛼∈Λ𝐿′
𝛼 . 

 

Proof. First, consider the case when the index set consists two members {𝐿1, 𝐿2}, then by 

proposition 4 in[6], 𝐿1⨁𝐿2 ≤𝑒∗ 𝐿′
1⨁𝐿′

2. Suppose that the result is correct for an index of 

𝑚 − 1  items. Now, let {𝐿1, 𝐿2, … , 𝐿𝑚}  be independent family of submodules of 𝑀  with 

𝐿𝑖 ≤𝑒∗ 𝐿′
𝑖  for each 𝑖 = 1, … , 𝑚. By the previous case we have ⨁𝑖

𝑚−1𝐿𝑖 ≤𝑒∗ ⨁𝑖
𝑚−1𝐿′

𝑖. Since 

𝐿𝑚 ≤𝑒∗ 𝐿′
𝑚 , we get ⨁𝑖

𝑚𝐿𝑖 ≤𝑒∗ ⨁𝑖
𝑚𝐿′

𝑖 . Finally, let {𝐿𝛼}𝛼∈Λ  be the independent family of 

submodules of 𝑀 and 𝐿𝛼 ≤𝑒∗ 𝐿′
𝛼  for each 𝛼 ∈ Λ, let 𝑆 be a non-zero cosingular of ⨁𝛼∈Λ𝐿′

𝛼. 

So 𝑆 contains a nonzero element which belong to 𝐿′
𝛼(1) ⨁ … ⨁ 𝐿′

𝛼(𝑚) for some 𝛼(𝑖). As a 

result 0 ≠ 𝑆 ∩ (𝐿′
𝛼(1) ⨁ … ⨁ 𝐿′

𝛼(𝑚)) ≤ 𝑆, the submodule of cosingular is cosingular[5], so 

𝑆 ∩ (𝐿′
𝛼(1) ⨁ … ⨁ 𝐿′

𝛼(𝑚))  is a nonzero cosingular submodule. Since 

𝐿𝛼(1) ⨁ … ⨁ 𝐿𝛼(𝑚) ≤𝑒∗ 𝐿′
𝛼(1) ⨁ … ⨁ 𝐿′

𝛼(𝑚) . Hence, 𝑆 ∩ (𝐿′
𝛼(1) ⨁ … ⨁ 𝐿′

𝛼(𝑚)) ∩

(𝐿𝛼(1) ⨁ … ⨁ 𝐿𝛼(𝑚)) ≠ 0  and consequently 𝑆 ∩ ⨁𝛼∈Λ𝐿𝛼 ≠ 0 . Therefore, 

⨁𝛼∈Λ𝐿𝛼 ≤𝑒∗ ⨁𝛼∈Λ𝐿′
𝛼.  

 

2. e*-Closed submodules 

In this section, we will prove some properties of e*-closed, as introduce in [5]. 

 

Definition 2.1 [6] 

     A submodule 𝑆  of a module 𝑀 is e*-closed in 𝑀, if𝑆 has no proper e*-essential extension, 

(symbolized by 𝑆 ≤𝑒∗𝑐 𝑀). 

 



Baanoon and Khild                             Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4613-4621 
 

4615 

Definition 2.2  

     Suppose that 𝑆1 and 𝑆2 are submodules of a module 𝑀. Then 𝑆2 is called e*-closure of 𝑆1 

if 𝑆1 is e*-essential in 𝑆2 and 𝑆2  is e*-closed in 𝑀. For example, in the ℤ-module ℤ12 , we 

have that 〈3̅〉 is e*-closure of 〈6̅〉, since 〈6̅〉 is e*-essential in 〈3̅〉 and 〈3̅〉  is e*-closed in 𝑀. 

 

Examples and Remarks 2.3 

1- For any cosingular module 𝑀, {0} is e*-closed, if {0} ≤𝑒∗ 𝐵 ≤ 𝑀, then{0} ∩ 𝐵 = {0} and 

𝐵 = {0} ( submodule of cosingular module is cosingular [4]). When 𝑀 is not a cosingular 

module, that is not generally true. For instance, the ℤ6-module ℤ6, {0̅} is not e*-closed since 

{0̅} ≤𝑒∗ ℤ6. 

2- Every e*-closed submodule is closed. The opposite need not always be true. For 

instance, ℤ6 as a ℤ6-module 〈2̅〉 is closed in ℤ6 but not e*-closed, see [6]. 

3- Assume that 𝑀 is a cosingular module. Then e*-closed and closed submodules coincide. 

4- Let the submodule 𝑆 of 𝑀 be e*-closed and e*-essential. Then 𝑆 = 𝑀. 

5- Every direct summand of a module 𝑀 is known to be closed in 𝑀. However, there is no 

association with direct summand if e*-closed.For instance, in the ℤ6-moduleℤ6, 〈3̅〉 is a direct 

summand of ℤ6 but not an e*-closed submodule. 

6- It is not necessary for a module 𝑀's intersection of e*-closed submodules to be e*-closed. 

For instance, in the ℤ-module ℤ⨁ℤ2, let 𝑆1 = ℤ⨁{0̅} and 𝑆2 = ℤ(1, 1̅) which are e*-closed 

submodules in ℤ⨁ℤ2, since 𝑆1 and 𝑆2 has no proper e*-essential extension in ℤ⨁ℤ2. But 𝑆1 ∩
𝑆2 = (2, 0̅)ℤ ≤𝑒∗ ℤ⨁{0̅}. So 𝑆1 ∩ 𝑆2 is not e*-closed. 

The fundamental characteristics of e*-closed submodules are presented. 

 

Proposition 2.4 [6] 

Assume that 𝑀 is a module, if  𝑆1 ≤ 𝑆2 ≤𝑒∗ 𝑀 and  𝑆1 ≤𝑒∗𝐶 𝑀, then 
𝑆2

𝑆1
≤𝑒∗

𝑀

𝑆1
. 

 

Proposition 2.5 Assume that 𝑔: 𝑀 → 𝑊′ is an epimorphism and 𝑆 ≤𝑒∗𝐶 𝑀  such that 

ker (𝑔) ≤ 𝑆. Then 𝑔(𝑆) ≤𝑒∗𝐶 𝑊′. 

 

Proof. Suppose that 𝐿′ ≤ 𝑊′  with 𝑔(𝑆) ≤𝑒∗ 𝐿′ .Then 𝑔−1𝑔(𝑆) ≤ 𝑔−1(𝐿′) ≤ 𝑀  from 

proposition 2 in [5] we have 𝑔−1𝑔(𝑆) ≤𝑒∗ 𝑀  and from proposition1 in [5] 

𝑔−1𝑔(𝑆) ≤𝑒∗ 𝑔−1(𝐿′) , since ker (𝑔) ≤ 𝑆 , we have 𝑔−1𝑔(𝑆) = 𝐾𝑒𝑟(𝑔) + 𝑆 = 𝑆 , so 

𝑆 ≤𝑒∗ 𝑔−1(𝐿′). But 𝑆 is  e*-closed in 𝑀; therefore, 𝑆 = 𝑔−1(𝐿′) and 𝑔(𝑆) = 𝐿′. Thus, 𝑔(𝑆) is 

e*-closed in 𝑊′.               

 

Corollary 2.6 Under isomorphism, the e*-closed submodule is closed. 

 

Corollary 2.7 Suppose that 𝑇1 and 𝑇2 are submodules of 𝑀 with 𝑇1 ≤ 𝑇2. If 𝑇2 ≤𝑒∗𝐶 𝑀, then 
𝑇2

𝑇1
 is e*-closed in 

𝑀

𝑇1
. 

 

Proposition 2.8 Let 𝑆1 ≤ 𝑀. Then 𝑀 has an e*-closed submodule 𝑆2 such that 𝑆1 ≤𝑒∗ 𝑆2. 

 

Proof. Consider Λ = {𝑆3 ≤ 𝑀|𝑆1 ≤𝑒∗ 𝑆3}, Λ ≠ ∅ since 𝑆1 ∈ Λ and every nonempty chain in 

Λ has an upper-bounded in Λ, hence Λ has a maximal element, say 𝑆2, according to Zorn's 

lemma, with 𝑆1 ≤𝑒∗ 𝑆2. Claim that 𝑆2 ≤𝑒∗𝐶 𝑀. Assume that there exists 𝑆2
′ ≤ 𝑀 such that 

𝑆2 ≤𝑒∗ 𝑆2
′. Hence 𝑆1 ≤𝑒∗ 𝑆2

′, so 𝑆2
′ ∈  Λ. But 𝑆2 is a maximal element in Λ, hence 𝑆2 = 𝑆2

′. 

Thus 𝑆2 is an e*-closed submodule in 𝑀.            
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Proposition 2.9 

Suppose that 𝑀 is a module, 𝑆1 and 𝑆2 are submodules of 𝑀 with 𝑆1 ≤ 𝑆2. If  𝑆1 ≤𝑒∗𝐶 𝑀, then 

𝑆1 ≤𝑒∗𝐶 𝑆2. 

 

Proof. Assume that 𝑆1 is an e*-essential submodule of 𝐿, where 𝐿 is a submodule of  𝑆2 . 

Since 𝑆1 ≤𝑒∗𝐶 𝑀. Hence 𝑆1 = 𝐿. Thus, 𝑆1 is e*-closed in 𝑆2.                           

 

     A module 𝑀 is considered chained if either 𝑆1 ≤  𝑆2 or 𝑆2 ≤  𝑆1holds true for each of its 

submodules 𝑆1and 𝑆2. See[9]. 

 

Proposition 2.10 Assume that 𝑀 is a chained module, 𝑇1 and 𝑇2 are submodules of 𝑀 with 

𝑇1 ≤ 𝑇2. If  𝑇1 ≤𝑒∗𝐶 𝑇2 and 𝑇2 ≤𝑒∗𝐶 𝑀, then 𝑇1 ≤𝑒∗𝐶 𝑀. 

 

Proof. Suppose that 𝑈 ≤ 𝑀 with 𝑇1 is the e*-essential submodule of  𝑈. By  the hypothesis 

has two cases: 

Case I: If 𝑈 ≤  𝑇2 since 𝑇1 is e*-closed in 𝑇2.  Hence 𝑇1 = 𝑈. Thus, 𝑇1 is e*-closed in 𝑀. 

Case II: If 𝑇2 ≤ 𝑈 since 𝑇1 is an e*-essential submodule of 𝑈. Hence 𝑇1 is the e*-essential 

submodule of 𝑇2  and  𝑇2 is the e*-essential submodule of  𝑈. But 𝑇1 is e*-closed in 𝑇2 and 𝑇2 

is e*-closed in 𝑀; therefore, 𝑇1 = 𝑇2 = 𝑈. Thus, 𝑇1 is e*-closed in 𝑀. 

 

      The following proposition proves that the direct sum of e*-closed submodules is an e*-

closed submodule. 

 

Proposition 2.11 Suppose that 𝑊1  and 𝑊2  are modules with 𝑇1 ≤ 𝑊1  and 𝑇2 ≤ 𝑊2 . If 

𝑇1 ≤𝑒∗𝐶 𝑊1 and 𝑇2 ≤𝑒∗𝐶 𝑊2, then𝑇1⨁𝑇2 ≤𝑒∗𝐶 𝑊1⨁𝑊2. 

 

Proof. Let 𝑇1⨁𝑇2 ≤𝑒∗ 𝑈1⨁𝑈2, where 𝑈1 ≤ 𝑊1 and 𝑈2 ≤ 𝑊2. Consider the inclusion maps 

𝑖1: 𝑈1 → 𝑈1⨁𝑈2  and 𝑖2: 𝑈2 → 𝑈1⨁𝑈2 . Since 𝑇1⨁𝑇2 ≤𝑒∗ 𝑈1⨁𝑈2 , then 

𝑖1
−1(𝑇1⨁𝑇2) ≤𝑒∗ 𝑖1

−1(𝑈1⨁𝑈2)  and 𝑖2
−1(𝑇1⨁𝑇2) ≤𝑒∗ 𝑖2

−1(𝑈1⨁𝑈2) . 𝑖1
−1(𝑇1⨁𝑇2) =

{𝑢1 ∈ 𝑈1| 𝑖1(𝑢1) = 𝑢1 ∈ 𝑇1⨁𝑇2} = 𝑇1 , 𝑖1
−1(𝑈1⨁𝑈2) = 𝑈1 , 𝑖2

−1(𝑇1⨁𝑇2) = 𝑇2  and 

𝑖2
−1(𝑈1⨁𝑈2) = 𝑈2 . But 𝑇1 ≤𝑒∗𝐶 𝑊1  and 𝑇2 ≤𝑒∗𝐶 𝑊2 . Hence 𝑇1 = 𝑈1  and 𝑇2 = 𝑈2 . Thus, 

𝑇1⨁𝑇2 ≤𝑒∗𝐶 𝑊1⨁𝑊2. 
 

3. e*-Coclosed submodules 

  In this section, we will introduce a new concept which is a generalization of coclosed, and 

prove some properties as in [10] and[11]. 

 

Definition 3.1 [7] 

Let 𝑇 ≤ 𝑆  be submodules of 𝑀 .When 
𝑆

𝑇
≪𝑒∗

𝑀

𝑇
 implies that 𝑆 = 𝑇 . 𝑆  is said to be an 𝒆∗ -

coclosed submoduleof 𝑀 (symbolizedby 𝑆 ≤𝑒∗𝑐𝑐 𝑀). 

 

Examples and Remarks 3.2 

1. Every 𝑒∗-coclosed submodule is coclosed.  

Let 𝑀 be a module, 𝑆 be an 𝑒∗-coclosed submodule of 𝑀, and 𝑇 a submodule of 𝑆 such that 
𝑆

𝑇
≪

𝑀

𝑇
. Every small is 𝑒∗-essential small. As a result,  

𝑆

𝑇
≪𝑒∗

𝑀

𝑇
, because  𝑆 is an 𝑒∗-coclosed. 

Thus, 𝑆 = 𝑇 and 𝑆 is a coclosed submodule of 𝑀. 
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2. The opposite of (1) need not always be accurate. For instance, the only proper submodule 

of 〈3̅〉 in ℤ6 as a ℤ-module is 〈0̅〉, 
〈3̅〉

〈0̅〉
≃ 〈3̅〉, and 

ℤ6

〈0̅〉
≃ ℤ6. So 〈3̅〉 is cocolosed in ℤ6, but it is 

not 𝑒∗-coclosed in ℤ6.  

3. In ℤ6 as a ℤ6-module, 〈2̅〉 is 𝑒∗-coclosed in ℤ6. Since the only proper submodule of 〈2̅〉 is 

〈0̅〉, 
〈2̅〉

〈0̅〉
≃ 〈2̅〉, and 

ℤ6

〈0̅〉
≃ ℤ6. 〈2̅〉 is not an 𝑒∗-essential small submodule of ℤ6.  

4. In ℤ  as a ℤ-module, 2ℤ   is not 𝑒∗ -coclosed submodule of ℤ . Since there is a proper 

submodule 4ℤ  of 2ℤ,  
2ℤ

4ℤ
≃ 〈2̅〉, and 

ℤ

4ℤ
≃ ℤ4. 〈2̅〉 is an 𝑒∗-essential small submodule of ℤ4. 

5. Direct summand of a module need not be 𝑒∗-coclosed. For instance, the submodule 〈3̅〉 is a 

direct summand of ℤ6 as a ℤ-module, but it is not 𝑒∗-coclosed in ℤ6.  

6. Let 𝑀 be an 𝑒∗-hollow module. Then 𝑀 has only one proper 𝑒∗-coclosed, which is a zero 

submodule. Let 𝑇 be a proper submodule of 𝑀. Then 𝑇 ≪𝑒∗ 𝑀 and so 
𝑇

{0}
≪𝑒∗

𝑀

{0}
. Thus, if 𝑇 

is 𝑒∗-coclosed in 𝑀, then 𝑇 = {0}. 

 

  The next proposition gives the basic properties of 𝑒∗-coclosed submodules. 

 

Proposition 3.3 Let 𝑀 be a module and let 𝐴1 ≤ 𝐴2 ≤ 𝑀. 

1) If 𝐴2 is 𝑒∗-coclosed in 𝑀, then 
𝐴2

𝐴1
 is 𝑒∗-coclosed in 

𝑀

𝐴1
. 

2) If 𝐴1 ≪ 𝐴2 and 
𝐴2

𝐴1
 is 𝑒∗-coclosed in 

𝑀

𝐴1
, then 𝐴2 is 𝑒∗-coclosed in 𝑀. 

3) If 𝐴1 is 𝑒∗-coclosed in 𝑀, then 𝐴1 is 𝑒∗-coclosed in 𝐴2. 

 

Proof. 

1) Let 
𝐿

𝐴1
≤

𝐴2

𝐴1
 such that 

𝐴2 𝐴1⁄

𝐿 𝐴1⁄
≪𝑒∗

𝑀 𝐴1⁄

𝐿 𝐴1⁄
 by (the second isomorphism theorem),  

𝐴2 𝐴1⁄

𝐿 𝐴1⁄
≃

𝐴2

𝐿
 

and 
𝑀 𝐴1⁄

𝐿 𝐴1⁄
≃

𝑀

𝐿
. As a result, 

𝐴2

𝐿
≪𝑒∗

𝑀

𝐿
 , since 𝐴2 is 𝑒∗-coclosed in 𝑀. Thus, 𝐴2 = 𝐿 and 

𝐿

𝐴1
=

𝐴2

𝐴1
. Therefore, 

𝐴2

𝐴1
 is 𝑒∗-coclosed in 

𝑀

𝐴1
. 

2) Suppose that 𝐿 ≤ 𝐴2 such that 
𝐴2

𝐿
≪𝑒∗

𝑀

𝐿
. Define 𝜆:

𝑀

𝐿
⟶

𝑀

𝐿+𝐴1
 by 𝜆(𝑚 + 𝐿) = 𝑚 + 𝐿 + 𝐴1 

for each 𝑚 ∈ 𝑀. Easley sees that 𝜆 is an epimorphism, so by proposition 3 in [7], 
𝐴2

𝐿+𝐴1
≃

𝐴2 𝐴1⁄

𝐿+𝐴1 𝐴1⁄
≪𝑒∗

𝑀 𝐴1⁄

𝐿+𝐴1 𝐴1⁄
≃

𝑀

𝐿+𝐴1
. Since 

𝐴2

𝐴1
 is 𝑒∗-coclosed in 

𝑀

𝐴1
, so 

𝐿+𝐴1

𝐴1
=

𝐴2

𝐴1
  and 𝐴2 =  𝐿 + 𝐴1 . 

Since 𝐴1 ≪ 𝐴2; thus 𝐴2 =  𝐿. Therefore, 𝐴2 is 𝑒∗-coclosed in 𝑀. 

3) Let 𝐿 ≤ 𝐴1 such that 
𝐴1

𝐿
≪𝑒∗

𝐴2

𝐿
≤

𝑀

𝐿
 So by proposition 1 in [7],  

𝐴1

𝐿
≪𝑒∗

𝑀

𝐿
. Since 𝐴1 is 𝑒∗-

coclosed in 𝑀, so 𝐿 = 𝐴1. Therefore, 𝐴1 is 𝑒∗-coclosed in 𝐴2. 
 

Proposition 3.4  Let 𝑀 = 𝑀1 ⊕ 𝑀2 be a module, and 𝐴 ≤𝑒∗𝑐𝑐 𝑀1. Then 𝐴 ≤𝑒∗𝑐𝑐 𝑀. 

 

Proof. Let 𝐴′ ≤ 𝐴 such that 
𝐴

𝐴′
≪𝑒∗

𝑀

𝐴′
=

𝑀1⊕𝑀2

𝐴′
. Hence 

𝐴

𝐴′
≪𝑒∗

𝑀1

𝐴′
⊕

𝐴′⊕𝑀2

𝐴′
. So 

𝐴

𝐴′
≪𝑒∗

𝑀1

𝐴′
 by 

corollary 1 in [7]. Since 𝐴 ≤𝑒∗𝑐𝑐 𝑀1. Therefore, 𝐴′ = 𝐴 and 𝐴 ≤𝑒∗𝑐𝑐 𝑀. 

 

Proposition 3.5 Let 𝑀 be a module and 𝐴 a nonzero submodule of 𝑀. If 𝐴 ≤𝑒∗𝑐𝑐 𝑀, then 𝐴 is 

not 𝑒∗-essential small in 𝑀.  
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Proof. Assume 𝐴  is  𝑒∗ -essential small in 𝑀  and 𝐴 ≤𝑒∗𝑐𝑐 𝑀 . Because {0} ≤ 𝐴  and 𝐴 ≃
𝐴

{0}
≪𝑒∗

𝑀

{0}
≃ 𝑀. Then 𝐴 = {0} which is a contradiction. Therefore, 𝐴 is not an 𝑒∗-essential 

small in 𝑀. 

 

4. e*-Extending modules. 

We will present a new idea in this part, a generalization of the extending module as in [12], 

[13] and [14]. 

 

Definition 4.1 If every submodule of a module 𝑀 is e*-essential in a direct summand, the 

module is said to be e*-extending. 

 

Remarks and Examples 4.2 

1. Each  extending is an e*-extending module. 

2. If 𝑀 is a cosingular module, then e*-extending and extending modules are coincide. 

3. The polynomial ring 𝑅 =  ℤ[𝑥]  is a commutative Noetherian domain such that 𝑊 =
ℤ[𝑥]⨁ℤ[𝑥] as 𝑅-module is not extending [4]. Since ℤ[𝑥] is a commutative domain which not 

filed so by Theorem 2.10, [5] 𝑅 is a right cosingular ring and by Corollary 2.7, [5] any right 

𝑅-module is cosingular module. Hence 𝑊  is cosingular 𝑅-module, from (2) 𝑊  is not e*-

extending. 

4. The direct sum of e*-extendingis not e*-extending. For instance, the ℤ[𝑥]-module ℤ[𝑥]is 

e*-extending because ℤ[𝑥] is an integral domain, every non-zero ideal in the integral domain 

is essential [3], so ℤ[𝑥] is extending, hence by (1), ℤ[𝑥] is e*-extending. But ℤ[𝑥]⨁ℤ[𝑥] as 

ℤ[𝑥]-moduleis not e*-extending. 

5. Assume 𝑃 is a prime number. Then the ℤ-module ℤ𝑝⨁ℤ𝑝2 is e*-extending module. 

 

     The fundamental characteristics of e*-extending modules are then presented. 

 

Proposition 4.3 If the module 𝑀 is an indecomposable, then 𝑀 is e*-extending if and only if 

each of its nonzero cyclic submodules is e*-essential in 𝑀. 

 

Proof. (⟹)Clear. 
(⟸) Suppose that 𝑆 is a non-zero submodule and 0 ≠ 𝑠 ∈ 𝑆. Hence 𝑠𝑅 is e*-essential in 𝑀. 

Because 𝑠𝑅 ≤ 𝑆 ≤ 𝑀, hence 𝑆 ≤𝑒∗ 𝑀. Therefore, 𝑀 is e*-extending.     

 

The following shows under which condition makes the e*-extending hereditary property. 

 

Proposition 4.4 If 𝑀 is an e*-extending module and 𝑆 is a submodule of 𝑀 such that the 

intersection of 𝑆 with any direct summand of 𝑀 is a direct summand of  𝑆, then 𝑆 is an e*-

extending module. 

 

Proof. Let 𝐿  be a submodule of 𝑆 ,because 𝑀  is an e*-extending. There exists a direct 

summand 𝑆1 of  𝑀, with 𝐿 ≤𝑒∗ 𝑆1. By the hypothesis, 𝑆 ∩ 𝑆1 is a direct summand of  𝑆 and  

𝐿 = 𝐿 ∩ 𝑆 ≤𝑒∗ 𝑆1 ∩ 𝑆. Thus, 𝑆 is an e*-extending module. 

Recall that a module 𝑀 is called duo, if every submodule of 𝑀 is fully invariant, see [15]. 

Recall that a module 𝑀 is called distributive if its lattice of submodulesis a distributive lattice, 

that is, 𝐴 ∩ (𝐵 +  𝐶)  =  (𝐴 ∩ 𝐵)  +  (𝐴 ∩ 𝐶) for any submodules 𝐴, 𝐵 and 𝐶 of 𝑀. See [16]. 

 

Proposition 4.5 If 𝑀 is a duo (or distributive) e*-extending module, then each submodule of 

𝑀 is e*-extending. 
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Proof. Let 𝑆 be a submodule of 𝑀 and 𝑆1 be a submodule of 𝑆; because 𝑀 is an e*-extending. 

There exists a direct summand 𝐿 of  𝑀, with 𝑆1 ≤𝑒∗ 𝐿, 𝑀 = 𝐿⨁𝐿′. 𝑆 = 𝑆 ∩ 𝑀 = 𝑆 ∩ (𝐿⨁𝐿′), 

but 𝑀 is a duo (distributive),  𝑆 = (𝑆 ∩ 𝐿)⨁(𝑆 ∩ 𝐿′). So, 𝑆 ∩ 𝐿is a direct summand of  𝑆 and  

𝑆1 = 𝑆1 ∩ 𝑆 ≤𝑒∗ 𝑆 ∩ 𝐿. Thus, 𝑆 is an e*-extending module. 

 

The next proposition gives the characterization of  e*-extending modules. 

 

Proposition 4.6 An 𝑅-module 𝑊 is an e*-extending if and only if every e*-closed submodule 

is a direct summand. 

 

Proof.(⟹) Let 𝑆 be an e*-closed submodule of  𝑊. Since 𝑊 is e*-extending; there is a direct 

summand 𝐿 of  𝑊 with  𝑆 ≤𝑒∗ 𝐿. But  𝑆 is e*-closed. Hence, 𝑆 = 𝐿. 
(⟸) Let 𝑆 be a submodule of  𝑊. Then, by Proposition 2.8. an e*-closed submodule 𝐿 exists  

with 𝑆 ≤𝑒∗ 𝐿. By the hypothesis,  𝐿 is a direct summand. Therefore, 𝑊 is an e*-extending. 

 

Corollary 4.7 Under isomorphism, the e*-extending module is closed. 

Proof. Clear using the corollary 2.6. 

 

The direct summand of the e*-extending module is e*-extending, as shown by the following 

proposition. 

 

Proposition 4.8 A direct summand of e*-extending module is e*-extending. 

 
Proof. Let 𝑆 be a direct summand of an e*-extending module 𝑊. There is a submodule 𝑆′ of  

𝑊 such that 𝑊 = 𝑆⨁𝑆′. Let 𝐿 be an e*-closed submodule of 𝑆.  Hence, 𝐿⨁𝑆′ ≤𝑒∗𝐶 𝑆⨁𝑆′ =
𝑊,since 𝑊 is an e*-extending, so by proposition 4.6. 𝐿⨁𝑆′ is a direct summand of  𝑊, then 

𝑊 =  𝐿⨁𝑆′⨁𝐾 , for some submodule 𝐾  of 𝑊 . 𝑆 = 𝑆 ∩ 𝑊 = 𝑆 ∩ (𝐿⨁𝑆′⨁𝐾) = (𝑆 ∩
𝐿)⨁(𝑆⋂(𝑆′⨁𝐾))= 𝐿⨁(𝑆⋂(𝑆′⨁𝐾)). Hence,  𝐿 is a direct summand of 𝑆 . Thus, 𝑆  is e*-

extending.  

 

Theorem 4.9 Let 𝑊 be an 𝑅-module. Then the following statements are equivalent. 

1.𝑊 is e*-extending module. 

2. For every submodule 𝑆 of 𝑊, there is a decomposition 𝑊 = 𝐿⨁𝐿′, such that 𝑆 ≤ 𝐿 and 

𝑆 + 𝐿′ ≤𝑒∗ 𝑊. 

3. For every submodule 𝑆 of 𝑊, there is a decomposition 
𝑊

𝑆
=

𝐿

𝑆
⨁

𝐾

𝑆
, such that 𝐿 is a direct 

summand of 𝑊 and 𝐾 ≤𝑒∗ 𝑊. 

 

Proof. 

1 ⟹ 2) Let 𝑆 be a submodule of 𝑊, there is a direct summand 𝐿 of 𝑊 such that 𝑆 ≤𝑒∗ 𝐿, 

𝑊 = 𝐿⨁𝐿′ for some 𝐿′ ≤ 𝑊 . By proposition 4 in [6] .  𝑆⨁𝐿′ ≤𝑒∗ 𝐿⨁𝐿′ = 𝑊 . Then 𝑆 +
𝐿′ ≤𝑒∗ 𝑊. 

2 ⟹ 3) Let 𝑆 be a submodule of 𝑊, there is a decomposition 𝑊 = 𝐿⨁𝐿′, such that 𝑆 ≤ 𝐿 

and 𝑆 + 𝐿′ ≤𝑒∗ 𝑊 . 
𝑊

𝑆
=

𝐿⨁𝐿′

𝑆
=

𝐿

𝑆
+

𝐿′+𝑆

𝑆
, Since 𝐿 ∩ (𝐿′ + 𝑆) = 𝑆 . Hence, 

𝑊

𝑆
=

𝐿

𝑆
⨁

𝐿′+𝑆

𝑆
. Put 

𝐾 = 𝐿′ + 𝑆. 

3 ⟹ 1)Let 𝑆 be a submodule of 𝑊 , there is a decomposition 
𝑊

𝑆
=

𝐿

𝑆
⨁

𝐾

𝑆
, such that 𝐿 is a 

direct summand of 𝑊 and 𝐾 ≤𝑒∗ 𝑊. To show that 𝑆 ≤𝑒∗ 𝐿. Since 𝐾 ≤𝑒∗ 𝑊, then 𝑆 = 𝐾 ∩
𝐿 ≤𝑒∗ 𝑊 ∩ 𝐿 = 𝐿. Thus, 𝑊 is e*-extending module.  
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Proposition 4.10 Let 𝑊 be an e*-extending module and 𝑆 be an e*-closed submodule. Then 
𝑊

𝑆
 is an e*-extending module. 

 

Proof. Since 𝑆 is an e*-closed submodule of e*-extending module 𝑊. Hence 𝑆 is a direct 

summand of 𝑊, 𝑊 = 𝑆⨁𝑆′, for some 𝑆′ ≤ 𝑊. 
𝑊

𝑆
≃ 𝑆′ since 𝑆′ is a direct summand of 𝑊. So 

by Proposition 4.8. 𝑆′ is e*-extending, and by Corollary 4.7, 
𝑊

𝑆
 is an e*-extending module. 

 

Corollary 4.11 Let 𝑓: 𝑊 → 𝑊′ be 𝑅-homomorphism, and 𝑊 e*-extending with 𝑘𝑒𝑟𝑓 is e*-

closed. Then 𝑓(𝑊) is e*-extending. 

 

     We present enough requirements for the direct sum of e*-extending modules to be an e*-

extending module. 

 

Proposition 4.12 Let 𝑊 = 𝑊1⨁𝑊2 be a distributive module. If  𝑊1 and 𝑊2 are e*-extending 

modules, then 𝑊 is e*-extending. 

 

Proof. Let 𝑆 be a submodule of 𝑊.  Since 𝑊 is a distributive module, so 𝑆 = 𝑆 ∩ 𝑊 = 𝑆 ∩
(𝑊1⨁𝑊2) = (𝑆⋂𝑊1)⨁(𝑆⋂𝑊2) . Since 𝑊1  and 𝑊2   are e*-extending modules, then there 

exists a direct summand 𝑆1  of 𝑊1  and 𝑆2  of 𝑊2  such that 𝑆⋂𝑊1 ≤𝑒∗ 𝑆1  and 𝑆⋂𝑊2 ≤𝑒∗ 𝑆2 . 

Hence 𝑆 ≤𝑒∗ 𝑆1⨁𝑆2, where 𝑆1⨁𝑆2 is a direct summand of 𝑊. Thus, 𝑊 is e*-extending. 

 

Proposition 4.13  Let 𝑊 = ⨁𝑖∈𝐼𝑊𝑖 be an 𝑅-module. Where 𝑊𝑖 is a submodule of 𝑊 for each 

𝑖 ∈ 𝐼 = {1, … , 𝑛}. If  𝑊𝑖 is e*-extending for each 𝑖 ∈ 𝐼 and every e*-closed submodule is fully 

invariant, then  𝑊 is e*-extending. 

 

Proof.  Let  𝑆 be e*-closed submodule of  𝑊. By the hypothesis 𝑆 is a fully invariant . Hence, 

𝑆 = 𝑆 ∩ 𝑊 = 𝑆 ∩ (⨁𝑖∈𝐼𝑊𝑖) = ⨁𝑖∈𝐼(𝑆 ∩ 𝑊𝑖). Since 𝑊𝑖 is e*-extending with 𝑆 ∩ 𝑊𝑖 ≤ 𝑊𝑖 for 

each 𝑖 ∈ 𝐼 , then there exists a direct summand 𝐿𝑖  of  𝑊𝑖  for each 𝑖 ∈ 𝐼  such that  𝑆 ∩
𝑊𝑖 ≤𝑒∗ 𝐿𝑖. Hence, by Proposition 1.1, = ⨁𝑖∈𝐼(𝑆 ∩ 𝑊𝑖) ≤𝑒∗ ⨁𝑖∈𝐼𝐿𝑖 . But 𝑆 is an e*-closed, so 

𝑆 = ⨁𝑖∈𝐼𝐿𝑖 is a direct summand of 𝑊. Therefore, 𝑊 is e*-extending. ∎ 

 

5. Conclusions. 

We Confirm the following outcomes: 

1. Under isomorphism, the e*-closed submodule is closed. 

2. Every submodule is e*-essential in e*-closed. 

3. The direct sum of e*-closed submodules is e*-closed. 

4. Every 𝑒∗-coclosed submodule is coclosed. 

5. The direct sum of e*-extending is not e*-extending. 

6. The direct summand of the e*-extending module is e*-extending. 

 

 

 

 

 

 



Baanoon and Khild                             Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4613-4621 
 

4621 

References 
[1] F. Kash, Modules and rings, London: Academic Press, 1982.  

[2] S. M. Yaseen, " Semiannihilator Small Submodules.," international Journal of Science and 

Research (IJSR) , vol. 7, no. 1, pp. 955-958, 2018.  

[3] K. Goodearl, Ring theory: Nonsingular rings and modules, CRC Press, 1976.  

[4] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending modules, 1994: Longman 

Group Limited.  

[5] A. Ç. Özcan, "Modules with small cyclic submodules in their injective hulls," Comm. Algebra, 

pp. 1575-1589, 4 30 2002.  

[6] H. Baanoon and  W. Khalid, "e*-Essential Submodule," European Journal of Pure and Applied 

Mathematics, pp. 224-228, 1 15 2022.  

[7] H. Baanoon and W. Khalid, "e*-Essential small submodules and e*-hollow modules," European 

Journal of Pure and Applied Mathematics, pp. 478-485, 2022.  

[8] D. X. Zhou and X. R. Zhng, "Small-Essential Submodules and Morita Duality," Southeast Asian 

Bulletin of Mathematics, 6 35 2011.  

[9] B. Osofsky, "A construction of nonstandard uniserial modules over valuation domains," Bulletin 

(New Series) of the American Mathematical Society, pp. 89-97, 1 25 1991.  

[10] A. Abduljaleel and S. M. Yaseen , "Large-Coessential and Large-Coclosed Submodules," Iraqi 

Journal of Science , vol. 62, no. 11, pp. 4065-40670, 2021.  

[11] F. S. Fandi and S. M. Yaseen, "ET-Coessential and ET-Coclosed submodules," Iraqi Journal of 

Science, vol. 60, no. 12, pp. 2706-2710, 2019.  

[12] Y. M. Sahira and  M.  M. Tawfeek, " Supplement Extending Modules," Iraqi Journal of Science, 

vol. 56, no. 3B, pp. 2341-2345, 2015.  

[13] Y. A. Qasim and S. M. Yaseen, "On Annihilator-Extending Modules," Iraqi Journal of Science, 

vol. 63, no. 3, pp. 1178-1183, 2022.  

[14] S. M. Yaseen and M. M. Tawfiq, " Y-Supplement Extending Modules," Gen. Math. Notes., vol. 

29, no. 2, pp. 48-54, 2015.  

[15] A. Ç. Özcan, A. Harnanci and P. F. Smith, "Duo modules," Glasgow Mathematical Journal, vol. 

48, no. 3, pp. 533-545, 2006.  

[16] V. Erdogdu, "Distributive Modules," Can. Math. Bull, vol. 30, pp. 248-254, 1987.  

 

 

 

 

 

 


