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Abstract

A binary stream cipher cryptosystem can be used to encrypt/decrypt many types
of digital files, especially those can be considered huge data files like images. To
guarantee that the encryption or decryption processes need a reasonable time to
encrypt/decrypt the images, so we have to make the stream cipher key generator that
acts quickly without effect in the complexity or randomness of the output key binary
sequences. In this paper, we increase the size of the output sequence from binary to
digital sequence in the field GF (2%) to obtain byte sequence, then we test this new
sequence not only as binary but also 28-sequence. So we have to test the new output
sequence in the new mathematical field. This is done by changing the base of the
randomness tests and extending Golomb’s postulates from binary to 256. Some
theorems and lemmas are proved to find the new testing laws that are suitable to the
new sequences field. The results of using the extended randomness tests are compared
to the results of binary randomness tests to guarantee that the decision of pass or fail
is identical, the results also prove the precision of identicalness.

Keywords: Randomness, Stream Cipher, Basic Efficiency Criteria, digital
Sequences.
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1. Introduction
A random bit generator is a device or algorithm that generates a series of statistically
independent and unbiased binary digits. The frequency, run, and autocorrelation tests are
referred to as the Main Binary Standard Randomness Tests (MBSRT).

A good Pseudo Random Number Generator (PRNG) should meet a number of statistical
criteria. The statistical properties are as follows: the output symbols should be uniformly
distributed, and the binary symbols must be balanced. There are several statistical tests
including the frequency, serial, run, poker, and autocorrelation test which are considered the
five stander tests [1].

Since any sequence that is generated from any generator is a statistically random experiment,
so if we want to test its randomness, we can depend on the statistical random tests. The
randomness judgment is done by the following two conditions [2]:

1. The length of the tested sequence must equal the period of the sequence.
2. If condition (1) cannot be satisfied, so we test the sequence with as high length as possible
and we apply the test for many random experiments for different lengths.

In stream ciphers, the message units are bits, and the key is usually produced by a PRBG
where the plaintext is encrypted on a bit-by-bit basis. The key is fed into Random Bit Generator
(RBG) to create a long sequence of binary signals. This key stream is usually mixed with the
plaintext by XOR (Exclusive-OR modulo 2 addition) to produce the ciphertext stream using the
same PRBG, see [1].

Universal tests were presented by Schrift and Shamir in 1993 [3] for verifying the assumed
properties of a PRBG in which the output sequences of PRBG are not necessarily uniformly
distributed. Gustafson et al. in 1994 [4] describe a computer package that implements various
statistical tests for assessing the strength of a PRBG. In 1996, Gustafson [5] considered
alternative statistics for the runs and autocorrelation tests. In 1996, Gustafson et al. [6] proposed
a new repetition test that measures the number of repetitions of I-bit blocks. The test requires a
count of the number of repeated patterns, however, it does not require the frequency of each
pattern. Naser [7] proposed an extension to the binary standard randomness tests that are
suitable to be applied on penta-sequences (GF (5)), and he applied the extended randomness to
the output of an example of the digital penta-sequences. Ibraheem [8] attempted to extend the
2-tuple to d-tuple (d = 3) for the serial test, then we will generalize the 2-tuple binary serial
test to 2-tuple digital serial test for the digital (s —) sequences (s = 3) that are generated from
digital generators. Mohammed [9] generalized the binary poker test that is suitable to apply not
only to binary sequences but also to digital (m —) sequences (for m > 2), in other words, the
generalized poker test could be applied to digital (m —) sequences (for m > 2).

2. Statistical Randomness [10], [11]

In this section, we will introduce some basic concepts of the statistical randomness tests for
binary sequences.
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2.1 Basic Concepts of Randomness [1, 12, 7, 1, 1]

Remark (1): (random bits vs. random numbers) A RBG can be used to generate (uniformly
distributed) random numbers. For example, a random integer in the interval [0,n] can be
obtained by generating a random bit sequence of length log,|n + 1] bits, and it converts to an
integer; if the resulting integer exceeds n, then there is a one option that is to discard it and a
new random bit sequence is generated.

Definition (1): A Pseudo-Random Bit Generator (PRBG) is a deterministic algorithm that
generates a truly random binary sequence given a truly random binary sequence. The seed is
the input to the PRBG, and its output is a pseudorandom bit sequence of bits.

Remark (2): The chi-square ( x?2) distribution can be used to compare the goodness of fit of
the observed frequencies of the events to their expected frequencies under a hypothesized
distribution. The y?(v) distribution with the degree of freedom v arises in practice when the
square of v independent random variables having standard normal distributions is a summed.

2.2 The Randomness Postulates of Golomb [13]

Definition (2): Let S be a periodic sequence of period N. The randomness postulates of
Golomb are given as follows:

R1: In the cycle Sy of S, the number of 1's differs from the number of 0’s by at most 1.

R2: In the cycle Sy at least:

(@).  Half the runs have a length of1, at least one-fourth have a length 2, at least one-eighth
has length 3, etc., as long as the number of runs so indicated exceeds 1. In other words, the
number of gaps (sequence of zeros) with length 1 equals double (21) number of gaps with length
2, and it equals 4-times (22) number of gaps with length 3, and so on, and the same fact is true
for blocks, namely the sequence of ones.

(b).  Moreover, for each of these lengths, there are almost equal many gaps and blocks.

R3: The autocorrelation function C(7) is two-valued. That is for some integer T"

- N, =0
N.C@) = B @St = D@Sie ~ D= {10 2 < N — 1)

Definition (3) [13]: A binary sequence that satisfies Golomb's randomness postulates is called
a pseudo-noise sequence or a pn-sequence. The pseudo-noise sequences arise in practice as
output sequences of maximum-length linear feedback shift registers.

3. Generalization of Golomb's Randomness Postulates

In this section, we will study the randomness of sequence S = {s]}j;ol where s; € GF(2°)
and P is the period of the sequence S. In order to check the randomness of S, we have to
generalize the randomness postulates of the Golomb firstly. It is known that 28 = 256, so the
sequence S has 256 distinct digits s; € {0,1, ...,255}, where i = 0,1, ...,255.

In the next subsections, we will generalize three postulates for the randomness of Golomb,

namely R1, R2 and R3 which are mentioned in section two.

3.1 256-Digital Frequency Postulate
It is obvious that if the frequency n; of each distinct digit i is approximated to other
frequencies, then the 256-digital sequence is satisfied this postulate, so it must be as follows:
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Ng ® Ny = =" = Nygs
Statistically, n; represents the observed number occurrence of digit i, i = 0,1, ...,255. The
expected number of occurrences is:

EF = =~ 0.004P (1)
To obtain a sequence S which satisfies the 256-digital frequency postulate, then we have:
n; ~ EF,vi=0,1,..,255.
It is important to mention that: Y25 n; = P .

3.2 256-Digital Run Postulate

The 256-digital run here can be defined as the number of similar digits which are lie between
two different digits. Let R;; be the observed number of runs with type i runs with length j. Now
we can depend on the mathematical deduction to deduce the two new conditions of run
postulates:
1- R;; is approximately equal to 1/256/~1 of the R;;_;, R;;j = (1/256/7*R;;_;), where
2 < j < M;, M; denotes the length of maximum run of kind i.

2- All kinds of runs of length j are approximated to each other, s.t. Ry; = Ryj = - =
Ryss,; Where 1 < j < M;, it is obvious that:
Z;w;o JRij =n;,0 <i <255 )

To obtain a sequence S that satisfies the 256-digital run postulate, then we have:
R ~Ef,Vi=0,1,..255andj = 1.2,.., M,

where EjR is the expected number of runs with length j.
Now we need to calculate the expected number of runs with length (Ef), the next theorem will
help to calculate it.

Theorem (1): Let S be a sequence that satisfies the run postulate, then the expected number of
runs with length j, E]Rcan calculated as follows:

R = 220 1< < M,where M = max(Mo, My, -, Myss).
Proof
From relation (2), and nl ~ EF, then:
EFf = —— =E{ +2E] + -+ MEj; = 1J.ER. 3)
And since R;, = ;%16 then ER = 2—1 since S satisfies the runs postulate, so in general,
R _ _ET
Ef = 256]1'2<]<M “)
substitute Eq. (3) in Eq. (4), we get:
P o_ym JE _ oecpR J )
256 J=13256j-1 1 J 1256 '
By using the ratio test:
asM — oo then S’ = llm Z] 1@ == 1256] :
For S’ we have:
1
51 E
52 = 256 T 2562 2562 » SO
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1 2
Sm _E+2562+"'+256M (6)
756 M T ez T 2563 oot e 256M+1 (7)

By subtract relation (7) from relation (6), we have:

1 1 M 1 2 M
SM~ 256M = 56 T sz TV 25eM T 5er ser T 2seMen
then:

2555y M
S ot +—M——M
256 256 2562 256 256M+1

M M 1 M
2555y, =1+ — —_ =y —
M + 256 + 2562 oot 256M-1  256M 21—1 256/-1  256M

S _L( M 1 M
M ™ 555 f=12561_'—1 256M
let M — oo, the series

1 1 M
5" = lim sy = 2= (552, =i — lim 100) 8
Moo M 7 255 \&J=1256i-1  p00256M ( )

Notice that lim —2— = lim M. lim —— = lim M.0 = 0

Moo 256M Aﬁ»w Moo 256M M— 00

Since the series ¥.72; ——; is geometric series [14] witha = 1 and r = — and

since |r| = — - < 1, then the series is convergence series and the sum:
a 1 256
S=X% 1256] — == =—= 1.004 9)

1-r 1-1/256 255

By substituting relation (9) in relation (8), we have:
r_ 1 256 _ 256 _ 256

) _ © 2557255 2552 65025
Substitute Eq. (10) in Eq. (5) we get:
L = 256ER. 2%
256 5 65025
# ER = 227 ~ 0.004P
In general, and by using mathematical induction, we have:

R _ 255%P _ 0.992P .
Ej = e T e wherej =1,2,..., M.

(10)

Theorem (2): The expected number of total numbers E® of runs for any kind i, where 0 < i <
255 is ER = 220,

256
Proof

2552p 2552p 1
=YL = o = I — (12)
J=1256J%2 2563 J=1256-1

As we have proved in Theorem (1), that the series Y.
as M—oo, then:

j=135g/-1 IS geometric convergent series

Mo =2 21004 (12)

J=13256/-1 ~ 255

Using relation (12) in relation (11), we obtain:

R _ 255°P 256 _ 255P .
= J5er ‘755 — Jsez ¥ (0.004)(1.004)P = 0.004P

3.3 256-Digital Auto-Correlation Postulate

As mentioned before, this postulate is found to specify if the tested 256-digital sequence has
a repetition with itself. Let ny(7) be the number of similar digits in S after shifting it by 7, and
let n, (7) be the number of distinct digits in S after shifting it by 7, where t = 1,2, ...,P — 1,
s.t.
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ny(t) = #{s; = s; 2 Vi=12,..,P -1}

n(t) = #{s; #s;ynvVi=12,..,P -1}

suchthat z =1,2,...,P — 1.

Where ny(t) + ny(t) =P — 1.

As it is known that the probability of similarity of one digit from 256 digits is 1/256, then the
expected number of similarity for the auto-correlation postulate is:

EA(D) = % ~ 0.004(P — 1)

and the expected number of differences for the auto-correlation postulate is:

Ef (1) = 22020 £ 0.996(P — 1)

Note that E{'(7) = (P — 1) — E& (1)

4. Modified the 256-Digital Randomness Test

In this section, we will reformulate three main testing laws that are suitable to apply to 256-
digital sequences. We called the new digital randomness tests the Main 256-Digital Standard
Randomness Tests (M256DSRT). Let S be the 256-digital sequence, which has to be tested
with length L has an element(s) s; € {0,1, ...,255}and i = 0,1, ...,255.

4.1 256-Digital Frequency Test (256DFT)
Let n; be the observed number of occurrences of digit i, where i = 0,1, ...,255, and the expected

number of occurrences of digit i is EF = zLR ~ 0.004L, then the statistic value TF of 256DFT
is calculated as follows:

i—E (n;—L/256)* 256
rr =yt pass uol/B0R 2 yasen _y /56)2 . (13)
Or it can be written as:
TF 256 255
L

with freedom degree v = 255.

—0.004L)?, (13)

Next lemma gives more simple formula to apply the 256DFT to calculate T by using formula
(13).

Lemma (1): For 256DFT of 256-digital sequence S: TF = 353 n? —L.
Proof: From relation (13):

(ni=L/256)* _ 256
2255 n e 2255( n; — L/256)2

2
F _256\255 2 o L sw2s5 (L)
T L 2i=0™i ~ 25gpizo M ¥ 555
But ¥#>n; = L, then

256
TF =22%250n2 — 2L + L

L
TP =Beyasinz ) (14)

4.2 256-Digital Run Test (256DRN)
Let R;; be the observed number of runs with type i runs with length j, and let EjR be the

expected number of runs with length j, then, the statistic value T of 256DRT is calculated as
follows:
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R _ wM; (Ru —Ej ) ML (Rij— 2552L/2561+2)
Iy = Zj=0 ER - Z 2552L/256J+2 ' (15)
or approximately, can be written as:
N2
R _ wM; (Rij—0.992L/256/) '
T; ~ZJ'=0 0.992L/256/ (15)

for0 <i < 255.
With freedom degree v; = M; — 1. A formula (15) can be reformulated in another face:
T = (255/256)%/L ¥ 256/RE — 2% Ry + (255/256)L,  (16)

or it can be written as:

TF ~ 0.992/L%%,256/RE — 277 Ry + 0.996L (16"
In another style of calculatlng a 256-run test, we can find the value T® which represents the
sum of the values TR for 0 < i < 255 as follows:

R = 21258 TlR . (17)
However, here it is compared with T, at freedom degree v; = 256(M; — 1).

4.3 256-Digital Auto-Correlation Test (256DACT)
In this subsection, we will attempt to calculate the statistical value of the 256-Digital Auto-
Correlation Test (256DACT) in two faces.

4.3.1 256DACT using Classical Model

In classical 256DACT, we want to estimate T4 (7) in this model so we add the 256-sequence
S before it is shifted by 7 with 256-sequence S after it is shifted by T (mod 256), so we get a
new 256-digital sequence S “with length L — rand the new expected mean of occurrence of any

digitis E4(7) = ﬂ then applying the 256-DACT using the following relation:

zssM — 31255 (@ Tzse) 256 2255 n2(0)—(L-1). (18)

E4 (T) 256

Where n;(7) is the frequency of the digit i in the sequence S’ and the freedom degree
v = 255.

TA(7) =

4.3.2 256DACT using Modern Model

In this model, let ny(7) be the number of similar digits in S after it is shifted by 7, and n, (1)
be the number of distinct digits in S after it is shifted by z, respectively, where t = 1,2, ..., L —
1. While the expected number of similarities and differences, respectively are:

L- 255(L-7)
E{(r) = ;; and E{ (1) = -r :

The following lemma proves that the chi square of auto correlation test for the 256-digital
sequence S is:

(ni(f)‘ElA(T))Z (no(0)- 256)2 (nl(T)_ZSS(L—r))z

T4(1) = i1=0 EA(D) = L7 + 255(L—2'E)6 ) (19)

256 256
with freedom degree v = 1.

Lemma (2): The Chi-square of autocorrelation test for the 256-digital sequence S that is shifted
by T is:

TA(T) = 255(L (256n0(r) —(L - T))
Proof: For SImpIICIty, take L' = L — 7,ny = ny(t) and n; = n, (7).
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2 1\2 n2
rrey g () _ (k) ()

i=0 EA(’[) Lr 255L/
] t 256 256
Since ng+n; =L—t=1L,thenN; =L —n,
Thus:

2 2
PGy = 2l o on 22

TA) = s (255 (no — ) + (1 52— my)’)
T4 = e (255 (no = ) + (1 (1-22) - o))
T = 22 (255 (no — ) + (- m) )

Since

(10— )" = (& = o), then:

T4() = 225556L (256 (no N %)2) - 225556; (no 2L5’6)2

T =25 (U5) = s @sen -1
£ TA®) = 72— (256my(7) — (L - n)’ (20)
Or approximately, can be written as:
TA(7) ~ 222 = (256m0(7) — (L - D)’ (20"

5. Implementation of M256DSRT on 256-Digital Sequences (256DS)

Now we will try to implement the M256DSRT on output sequences of 256DS. In this manner,
two cryptosystems are chosen to test their output, these cryptosystems are:

1- Stream cipher cryptosystem (SCC) [14]: consists of a number of LFSR's with balanced
nonlinear Boolean function.

2- Multiplicative Cyclic Group System (MCGS) [15]: This new generator can be consisting
of a single or more than one MCG unit with a balance combining 133, 55, 235, ... 127 215 41.
1- 256-Frequency test: Table 1 shows the frequency values N;.

Table 1: frequencies (n;) of digits (0,1,...,255).

MTOUOWP>POWoONOUA WN RO
Rwououbsr~wbrobhor agwna
WRRARNNWWRUON WO~ O
NWRERRAN~NONWRARE DO
WRWNNNRFRPOOORNOW W WS
WROORADRNOWNRANON
NWNNEPEAWRAOWN - OO
WOWNODDOONW WO wSPEE
NONNMNNWEDERWN OO
DOWROWOAUONWNDN D D PG
WRPRNWOOWABRNOOD WU - NG
ROMADMDOODMNRL,NO BN WES
RPoUlRrRPODOODSOCO 0o N oy
DOWONUIONWOU P ND WS
O~NWWEFRWARANDWWWN P
AN UONERE WD ON OO DR
PWUoOWADMOIOION O N o

By using formula (14), we get:
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TF = 22 (25+ 25+ 49 + -+ 0 + 25 + 1) — 1000 = 238.528

This value is compared with T, = 288.016 where v = 255. The sequence S passed this test
since TF < T,.
1. 256-RUN test: Table (1) approximately shows the same values for the run test, with runs with
length 2 for the bytes 7, 212 and 240. In this part, we applied a 256-run test in two faces:

(@). By using formula (16), all the values of TF are passed with T, = 3.841 where
v =1 except the (10) values mentioned in Table 2 are failed:

Table 2: the failed values of TR to pass 256-run test.

Bytes 53 62 63 67 89 105 231 236 240 253
WEINEEN 6.775 3876 4389 3876 4389 3876 6.775 4389  6.775 3.876

Notice that the average of failed values is 4.9 that means the ratio of failed compared with T, =
3.841 is very little.

(b). By using formula (17), T® = 226.663, this value is compared with T, = 289.072
where v = 256. The sequence S passed this test since T® < T,,.

2. 256-Auto-Corrleation test: Table 3 shows the frequency values n, for similarity digits and
n, for difference for 256-Auto-Correlation test for shifting t = 1,2, ...,100.

Table 3: frequencies of n, and n, of bytes with T4(7) values

T

B 3 996 0209 26 11 963 13661 51 2 947 0.789 76 1 923 1.8%
72 1 997 2163 27 3 970 0169 52 5 943 045 77 4 919 0.043
S 1 9% 2160 28 3 969 0168 53 4 943 0.025 78 4 918 0.044
288 2 994 0922 29 4 967 0011 54 2 944 0781 79 2 919 0.712
S 4 991 0.003 30 3 967 0165 55 8 937 5049 80 3 917 0.098
O 6 988 1159 31 7 962 2741 56 S5 939 0469 81 5 914 0.556
/& 4 989 0.004 32 4 964 0013 57 1 942 1963 82 6 912 1.632
S 3 989 0198 33 3 964 0161 58 3 939 0126 83 4 913 0.049
S 6 985 1175 34 3 963 0159 59 4 937 0029 84 4 912 0.050
O 7 983 2548 35 1 964 2043 60 2 938 0764 8 6 909 1.653
MBS 2 987 0902 36 3 91 015 61 4 935 0.030 8 3 911 0.091
2 3 985 0192 37 6 957 1337 62 3 935 0121 87 1 912 1.854
e 5 982 0341 38 5 957 0412 63 4 933 0.032 8 4 908 0.054
s 4 982 0006 39 3 958 0152 64 3 933 0118 89 3 908 0.088
8 3 982 0187 40 1 959 2025 65 O 935 3667 90 3 907 0.087
G 5 979 0349 41 5 954 0421 66 S5 929 0503 91 3 906 0.086
e 6 977 1220 42 5 953 0424 67 1 932 1926 92 4 904 0.058
el 5 977 035 43 5 952 0428 68 3 929 0113 93 4 903 0.059
e 3 978 0181 44 6 950 1380 69 4 927 0.036 94 3 903 0.082
0 2 978 0876 45 3 952 0144 70 3 927 0111 9 6 899 1725
748 2 977 0874 46 3 951 0142 71 3 926 0109 9% 5 899 0.613
7 5 973 0366 47 2 951 0800 72 2 926 0731 97 10 893 11.924
¢ 9 968 7.068 48 2 950 0797 73 3 924 0.107 98 5 897 0.621
28 1 975 2083 49 1 950 1992 74 6 920 1576 99 5 896 0.625
el 1 974 2079 50 2 948 092 75 3 922 0.105 100 S5 895 0.629

Of course, the T4 (7) values are calculated using formula (19).
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5.2 Testing 256DS of MCGS
Consider the following sequence S with length L = 10000 bytes:
171,74,73, ..., 117, 155, 210.

1- 256-Frequency test: Table 4 shows the frequency values n;

Table 4: frequencies (n;) of digits (0,1, ...,255

0 1 2 3 4 5 6 7 8 9 A B C D = F

33 39 41 36 41 41 37 39 38 38 39 39 41 34 39 39
37 40 41 40 39 42 37 38 41 37 42 40 35 39 43 41
40 38 38 41 40 39 37 3r 39 39 41 35 38 40 38 41
42 38 37 37 38 39 40 37 39 41 39 38 41 37 41 36
37 41 37 39 38 40 41 40 41 42 43 42 38 40 41 42
39 41 39 39 41 38 38 38 37 40 40 39 40 39 38 40
38 38 40 37 38 39 40 39 39 34 41 41 41 43 42 39
40 41 38 38 40 39 41 37 41 42 41 40 38 36 40 40
39 41 41 37 40 36 40 41 37 41 39 40 40 39 41 39
38 41 35 38 41 37 42 39 37 41 37 36 40 38 33 41
38 37 41 36 42 36 42 40 36 42 37 41 38 43 38 39
39 39 39 39 3B 37 40 41 38 40 39 35 40 40 41 37
38 36 39 38 41 40 37 40 41 37 36 39 41 39 36 39
40 40 41 40 41 37 41 40 38 39 41 39 39 38 41 39
39 42 41 40 40 39 36 40 37 42 35 40 38 40 36 41
40 38 40 40 38 39 41 38 37 38 38 41 38 35 38 38

UOWP>O©®O®NoOUhWNRO

By using formula (14), we get:

F= 1§§20 (332 + 392 + --- + 382 + 382) — 10000 = 24.243
This value is compared with T, = 288.016 where v = 255. Sequence S passed this test since
TF < T,.

2- 256-RUN test: Table (1) approximately shows the same values for a run test, with runs with
length 2 for the (30) bytes. In this part, we applied 256-run test in two faces:

(@). By using formula (16), all the values of TR are passed with T, = 3.841 where
v = 1 with no fail.

(b). By using formula (17), T® = 27.009, this value is compared with T, = 289.072 where
v = 256. Sequence S passed this test since TR < T,.

3- 256-Auto-Corrleation test: Table 5 shows the frequency values n, for similarity digits and
n, for difference for 256-Auto-Correlation test for shifting t = 1,2, ...,100.

Table 5 : frequencies of n, and n, of bytes with T4 (7) values.
33 9966 0943 26 34 9940 0.634 51 38 9911 0.019 76 32 9892 1.185
43 9955 0.400 27 44 9929 0.655 52 34 9914 0610 77 42 9881 0.272
30 9967 2106 28 33 9939 0913 53 41 9906 0.119 78 39 9883 0.002
39 9957 0.000 29 33 9938 0.912 54 40 9906 0.034 79 36 9885 0.196
32 9963 1275 30 38 9932 0.023 55 53 9892 5176 80 29 9891 2.463
40 9954 0.024 31 40 9929 0.029 56 44 9900 0.687 81 35 9884 0.364
42 9951 0226 32 33 9935 0.909 57 40 9903 0.035 82 41 9877 0.132
39 9953 0.000 33 41 9926 0.110 58 47 9895 1723 83 38 9879 0.014
33 9958 0935 34 40 9926 0.030 59 36 9905 0.207 84 28 9888 2.986
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26 9964 4363 35 35 9930 0397 60 40 9900 0.036 85 31 9884 1.549
48 9941 2.075 36 42 9922 0244 61 35 9904 0378 86 38 9876 0.014
41 9947 0.101 37 42 9921 0.245 62 47 9891 1730 87 39 9874 0.002
45 9942 0923 38 43 9919 0431 63 31 9906 1580 88 37 9875 0.077
32 9954 1264 39 43 9918 0432 64 36 9900 0.205 89 28 9883 2.977
22 9963 7.442 40 33 9927 0.900 65 47 9888 1.736 90 44 9866 0.725
39 9945 0.000 41 35 9924 0393 66 42 9892 0.264 91 36 9873 0.190
45 9938 0.928 42 33 9925 0.898 67 36 9897 0.203 92 42 9866 0.282
36 9946 0.231 43 37 9920 0.093 68 35 9897 0373 93 27 9880 3.551
28 9953 3.109 44 29 9927 2525 69 34 9897 0595 94 33 9873 0.842
36 9944 0229 45 39 9916 0.000 70 37 9893 0.083 95 36 9869 0.188
34 9945 0.639 46 37 9917 0.092 71 43 9886 0460 96 48 9856 2.250
44 9934 0.650 47 40 9913 0.082 72 31 9897 1567 97 35 9868 0.352
42 9935 0.236 48 36 9916 0.213 73 38 9889 0.016 98 23 9879 6.381
42 9934 0.237 49 37 9914 0.090 74 41 9885 0.128 99 36 9865 0.186
38 9937 0.024 50 38 9912 0.019 75 37 9888 0.081 100 36 9864 0.185

Of course, the T4 (1) values are calculated using formula (19).

6. Conclusions and Future Works

This work concludes the following aspects:

1- We see that relation (19) needs freedom degree v = 255, while relation (20) needs freedom
degree v = 1, so, we believe that relation (20) is better than relation (19).

2- It is known that if the length of the tested 256-sequence is as long as possible, then we may
obtain more correct randomness results, so we see that to judge correctly the randomness of the
cryptosystem, we must take 256-sequence with length L >> 2000.

3- In Lemmas (1) and (2), it is noted that we do not need to calculate the expected value of any
sample in the three tests, so we do not need Eq. (13) and Eq. (15) anymore.

4- We have to compare the results of applying the two models (classical and modern) for
256DACT to guarantee the correctness of 256-randomness tests decision.

5- We may show that if the 256-sequence passes the (3) 256-randomness tests then it must pass
the binary-randomness tests and vice versa.

6- We have to expand more randomness tests, like serial, Poker,...etc. to be applied on 256-
digital tests, in order to estimate the real randomness of the 256-sequence.
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