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Abstract

Associate graph JI(R) is said to be idempotent divisor graph with vertices set
V(JI(R)) = R, if any two non- zero elements a;and a, are adjacent if and only if
a,.a, = e, where e is an idempotent element not equal 1. In this work we study and
introduce the extended idempotent divisor graph that is for any two non-zero
elements a,and a, adjacent if a,*. a,®2=e , where t;,t, € Z and e an idempotent
element not equal one, and we give some results for properties such as diameter and
the girth of this graph. Also, we investigated rings isomorphic to direct product two
finite local rings.

Keywords: extended zero divisor graph, idempotent divisor graph, degree of
vertices, size of a graph, reduced ring.
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1. Introduction

In this paper, we assume that R a finite commutative ring with identity 1 # 0, we used
Id(R) (U(R), respectively) the set of all idempotent (identity respectively) elements in aring R
and Z(R) the set of all zero divisor. In 1988 Beck give relationship between two branches in
mathematics ring and graph theory, when studied the coloring of commutative ring [1]. In
1999 Anderson modify this definition as zero divisor graph denoted by I'(R) and the vertices
of this graph equal Z(R) — {0} = Z(R)* and the elements a,.a, in V(I'(R)) , a,, a, adjacent
whenever a,.a,=0 in R [2]. Later many authors gave different definition see for example [3]-
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[10]. In 2016 Bennis, Mikram and Taraza introduced the extended zero-divisor graph of R,
denoted by T'(R) and two distinct vertices a, and a, are adjacent if and only if, there are
positive integers t; and t, such that a;'t.a,®2 =0 and a,%,a," # 0 [10]. Recently,
Mohammad and Shuker introduced an idempotent divisor graph with vertices set in R* =
R — {0}, and two non- zero distinct vertices a, and a, are adjacent if and only if a,.a, = e,
for some non-unit idempotent element e in a commutative ring R with identity 1 # 0, this
graph denoted by JI(R)[11]. Clearly T'(R) < JI(R) when R non-local ring and T'(R) = JI(R)
when R local ring. In this paper we give extended idempotent divisor graph JI(R) with
V(JI(R))= R* and two elements a,,a, € V( JI(R)) adjacent if and only if there are two
positive integers t; and t, such that a,%. a,* = e, where e is an idempotent element and
e = e? # 1 with a;*1,a,® # 0. This paper contained three sections. In section two we gave
the definition and some properties and examples of extended idempotent divisor graph for
reduce ring, in section three we gave the diameter and the girth for some rings as well as the
order and the size for these rings and the degree of their vertices.

In a graph theory the diameter of a graph G is the greatest distance between any two
vertices of a graph G denoted by diam(G), and the girth is the length of a shortest cycle
contained in a graph G denoted as gr(G). Also, the simple graph G is a graph without loops
neither multiple-edge connected graph G is the graph that has a path between every pair of
vertices. Moreover, m is the size of a graph G and which is the number of the edges, n denote
as the order of a graph G and it represents the number of vertices. The center of a graph is the
set of all vertices of minimum eccentricity, where w(G) the clique number G is a greats
complete sub-graph of a graph G. The chromatic number of a graph G denoted by x(G) and
defined as a minimal number of colours needed to colour the vertices in such a way that no
two adjacent vertices have the same colour. Furthermore, the complete graph K is a graph in
which every two distinct vertices are adjacent. For more details see for example [12], [13].

In a ring theory ring R is a local if it has only one maximal ideal and F is a fild of order q.
A reduced ring is a ring has no non-zero nilpotent elements. The idempotent element it is an
element such that: a = a. Boolean ring is a ring in which every element is idempotent. An
element x in aring R is called nilpotent if there exists a smallest positive integer t such that
xt = 0. v(x) denotes the order of nilpotency of x, the degree of nilpotency of a ring R defined
to be the supremum of the orders of nilpotency of its nilpotent elements and it is denoted by
v(R). It well known that any finite non-local ring can be written as a direct product of a local
ring, while every reduced ring can be written as a direct product of a field. For more details
see [14].

2. Definition and properties of extended idempotent divisor graph of reduced ring
In this part we introduced extended idempotent divisor graph and give example, as well as
we investigate when R a reduced ring.

Definition 2.1:

The extended idempotent divisor graph of a ring R is the simple graph denoted by JI(R)
with V(JI(R))= R*such that two distinct vertices a,,a, are adjacent if there exists two
positive integers t; and t, such that a,%. a,% = e, where e is an idempotent element such
thate # 1 and a;". a,' # 0. Where V(JI(R))= R* is the set of all non-zero vertices of JI(R).
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Example 1: Let R = Z,,, then
1(Z13) = {0,1,4,9} then the idempotent divisor graph and the extended idempotent divisor
graph show in Fig. 2.1

=7
<K

Figure: 2.1J1(Z3) Figure: 2.2 JI(Z,)

Remarks 2.2:

If R finite commutative ring with unit, then

1-R = U(R) U Z(R),

2- Every element a € R is either nilpotent or there exists appositive integer t such that a® is
an idempotent.

3-If u € U(R), thenu! = 1, for some 1 € Z*.

Theorem 2.3:

For every reduced ring R, diam(JI(R)) < 2.

Proof:

Since R a finite reduced ring then R non-local and V(m) = U(R) U Z(R)". Now, for any

x,y € JI(R) ,since R finite ring, then there are three cases:

Casel: If x,y € U(R) then, there are 1;,1, € Z* such that x'+ = yl2 = 1. So, for any non-
identity idempotent element e € R, we have x'1 .e = y'2.e = e. Therefore, diam(x,y) = 2 in
this case.

Case2: If x,y € Z(R)", since R reduced ring then R does not contains a nilpotent element, so
that x!'*t = e; andy'2 =e, ((where e,;,e, non-unit idempotent elements and 1,1, € Z*).
Which implies that x'1.y'2 = e,.e,. Hence diam(JI(R)) = 1 in this case.

Case 3: If y e Z(R)* , x € U(R) and. It’s obviously by Remarks 2.2 since x € U(R) then
x'1 = 1. Also since y € Z(R)* and R reduced then y'2 = e¢{0,1}, then we have x't.y'z =
l.e = e and we get diam (JI(R)) = 1 in this case. So, that for all cases diam(x,y) < 2.

Theorem 2.4:
If R be a reduced ring, then w(JI(R)) = x(I(R)) = |Z(R)*| + 1.
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Proof:

Since, R finite reduced ring, then R=F; X F, X ...... x F, , where F; are fields for all

i=12,..,n

First, we have to prove every two elements z,,z, € Z(R)* are adjacent in JI(R). Since z,,z, €

Z(R), then z;and z, have a unique representation as z; = (aj,ay, ... ... ap) and z, =

(by, by, ... ... b,) where a;,b; € F; and there is at least one element a; € F;(respctively, b; €

F;) such that a; = 0;(b; = Ojresp.), i,j € {1,2,..,n}, Which implies that there are t;,t, € Z
t Oi ifai=0 t O] lfb]=0

such that a;" = {11 ifa, £0° % {1j ifb; # 0

Hence z,,z, are idempotent elements not equal to 1 and z,.z, is an idempotent element not

equal 1. Consequently, Kzgy+| is @ complete sub-graph induced by Z(R)* as well as 1 € R

adjacent with every non-zero divisor in JI(R). Hence JI(R) has a complete sub-graph

Kiz®)*+1- Finally, if u € U(R) — {1}, then u non-adjacent with 1. Therefore Kz g)+1 IS a

largest complete sub graph and w(JI(R)) = x(JI(R)) = |Z(R)*| + 1. -

Proposition2.5:
. IR*| =1 if ve Z(R)"
For a reduced ring R, deg(V),eimy = { IZ(R)| if v € U§R§

[UR)[K; + Kizry*|-

}. Moreover JI(R) =

Proof:
If v e Z(R)*, then by the same way as the proof of the Theorem 2.4. We get adjacent with

every element JI(R). So that degyezr) (v) = |[R*| — 1.
If ve U(R), then v adjacent with every element in Z(R)*, and non-adjacent with any element
in U(R). Therefore, degyeyry(V) = |[Z(R)"|.

Corollary 2.6:
Let R be a reduced ring, then the center of R: Cent(R)=Z(R*).

3. More properties in JI(R).

It well-known JI(R) is a connected simple graph and the diameter less than or equal three
as well as a girth equal three or oo, Thus JI(R) is also. More than JI(R) € JI(R), so we start
this part give a necessary and sufficient conditions to be JI(R) = JI(R).

Definition 3.1: A ring R is called Boolean ring if every element in R is an idempotent
element[14].

Theorem 3.2:
Let R be aring, then JI(R) = JI(R) if and only if R Boolean ring or local ring with Z(R)? =

0.

Proof:

Clearly if R Boolean ring or local ring with Z(R)? = 0, then JI(R) is complete graph so that
JI(R) = JI(R).

Conversely, let I(R) = JI(R), if R local, then JI(R) = I'(R), so by [10] we get Z(R)? = 0.
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If R non-local. Since R finite ring then R = R; X R, X ... ... X R, , where n > 2 and R; local
ring for each i € {1,2,..n}. We claim that R; = Z,.
If not, then there exists a; € R; — {05, 1;} for some i = 1,2, ....,n. without loss generality let
i=1. We note that an element (a;, 15,13, ........, 1,y is non-adjacent with an element
(11,04, 13, ... ..., 15y in JI(R). On the other hands, since R, a finite local ring, then there
exists t € Z such that:
at = {01 .if a; € Z(Rl)}.

1, if a; € U(Ry

Then we have
(04,05, 13, ..., 1y),ifa; € Z(R1)}
t _ n
@ T g 1) (L 0 Ly L) = {0 177000 800
is a non-unit idempotent element in R. Therefore, JI(R) = JI(R) which is a contradiction. So
R=7Z,X7Z,X%.... X Z,. Then we have R Boolean ring or local ring with Z(R)?2 = 0. m

Now, we classify rings by diameter of a graph JI(R).

Theorem 3.3:

Let R be a finite commutative ring, then:

1- diam (JI(R)) = 0 if and only if R = Z, or Z,[x]/(x?).

2- diam (JI(R)) = 1if and only if R local with x?®~1,yv®-1 =0 for all x,y € Z(R)* or R
Boolean ring.

3- diam (JI(R)) = 3 if and only if R = R; X R, X ........R,,, where R, local rings which are
not fields.

4- otherwise diam (JI(R)) = 2.

Proof:
1- It’s clear.
2- If R local with x¥®~1,yv®-1 = 0, then by [11] we have JI(R) = I'(R) , whence by

leads [11] to diam (JI(R)) = 1. Also, If R non- local Boolean ring, then by [11], R is a
complete graph, consequently diam(JI(R)) = diam (JI(R)) = 1.

Conversely, let R be a ring with diam (JI(R)) =1. If R local whence by [10],
xV®~1 -1 =0 for all x,y € Z(R)*. If R non-local, since diam (JI(R)) = 1 then for any
two elements u;,u, € U(R) are adjacent in (JI(R)) this means, there exist positive integers
1,and 1,and non-unit idempotent element e such that (u;)'. (u,)'2 = e. But uy,u, € U(R), S0
that e = 1. Which is a contradiction, hence R has only one unit element, there for R = Z(R) U
UR) =Z(R)U {1} and we get R=1z, X7y X ........Z, (n-times). Consequently, R is a
Boolean ring.

3- Let R; local ring not field, for all i € {1,2, ...n}, it is enough to prove there are two vertices
x and yin JI(R) such that d(x,y) = 3. Since R; local not field, then by [15] there exists
z; €Z(Ry) for all i such that, zZ=0 and z.x; =0, where x; € Z(R;). Let
7= (21,29, e o ,Zn) ER, then z2 = 0. We note that z adjacent with an element x =
(X1, X2 wee e xp) € Rif and only if x; € Z(R;) [ because if x; € U(R;), then z;.x; & {05, 1;}].
Also 1= (14,1,,...... 1,) adjacent with y where y = (y1,y2, - .- yn) If and only if y; €
U(R;) U{0;}andy # 0. So that 1 —y — x — z, hence d(1,z) = 3. Therefore, diam (JI(R)) =

3.
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Conversely, let diam(JI(R)) = 3, since R finite ring, then R = R; X R, X .....X R, ,where
R; are local ring for all i € {1,2,..,n}. If R; is a field for some i, say R; is a field then there
are three cases:

Casel: If x,y € Z(R)" and xy # 0, then there exist three sub cases:

Sub-case a: If there exists positive integers tjand t, such that x%1*1 yt2*1 =0, Since
x%.xy = 0, then x adjacent to xy also since xy.y% = 0, then y adjacent to xy. So x —xy —y
and d(x,y) = 2.

Sub-case b: If there is t € Z such that x* = 0 and for each 1€ Z, ,y! # 0 then y is an
idempotent element in R. As long as x,y € Z(R)", then there are a,b € Z(R)" — {x,y} such
thatax =by = 0. If bx = 0,thenx —b —y and d(x,y) < 2. if bx # 0, since x"" L. (bx) = 0
then x — xb. Which implies that x —xb —y and d(x,y) < 2.

Sub-case c: If x'* =e; and y'z = e,, where 1,1, € Z and e, e, € Id(R) — {0,1}, then x
adjacenttoy and d(x,y) = 1.

Case 2: if x,y € U(R), then by Remark 2.2 we have x't = y'z = 1, for some 1;,1, € Z. So
x—e—yand d(xy) <2

Case 3: if x€ U(R), and y € Z(R)*. Then x = (Xq,Xy,.....X,), Where x; € U(R;) and
Y= (Y1, Y2, cer er Yn) » Vi € Ry and, there exists y; € Z(R;). So x =1, y' = e for somel,t € Z
and e € Id(R) — {1}. If e # 0, then x—y and d(x,y) = 1. On other side if e = 0, since R, is a
field, then y, =0and hence y=(0,y5 V3, ....ys). Therefore x\.(1;,0,..,0,)=
(1,,1,,...,1,).(14,0,,...,0,) = (14,0,,...,0,) is an idempotent in R and
(14,05, ...,0,).y = (14,05, ...,0,).(0,y2,¥3, «-... ¥n) = (04,0, ...,0,). Whence d(x,y) = 2.
So that for all cases d(x,y) < 2 which is contradicts the assumption then every R; not fields.

Corollary 3.4:
Let R = F X R; X R, X ...x R, where F is afield, and every R; local ring, then the center of
Ris: cent(R) = {(1,0,0, ....0)}.

Proposition 3.5:

For any finite ring R, gr(ﬁ) = 3 except for the cases R = Z,, Z,[X]/(x?), Zo O Z5[x]/(x?),
then gr(ﬁ) = o0,

Proof:

Clearly if R = Zg or Z,[x]/(x%), then gr(JI(R)) = 3. Also, If R = Z,,Z,[x]/(x?), Zo OF
Z5[x]/(x%), then By Theorem 3.1 we have JI(R) = JI(R). Which implies that gr(a(R)) =
gr(JI(R)) = oo. Otherwise, by [11] we have gr(JI(R)) = 3.

The next result we gave an extended for any ring R = Fq X R’, where F is field of order g
and R’ a local ring.

Theorem 3.6:
Let R = F, x R, where F is a field of order g, and R’ local ring with av@®~1.pv®~1 = g,
forany a,b € Z(R")", then
v=(rs)=|R* -1
deg(v) o = { v=(0,s) = [F*[[Z(R)| + IZR")"| - 1
v=(0,u) = [F[[ZR)] + [UR)| + [F*[UR)| -1
v=(r,u) = [F"||Z(R)| + [UR)|
where r € F*, s € Z(R")*, u € U(R"), and the order of JI(R):
n=gqx|R'|-1, and the size of JA(R):
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1
m = = (Fl = DUZR)IART = 2) + [ZRDIFIVRDD + (ZCR)] = DAZR)IIF| - 2)
+ ()| @iF - D - )]

Proof:

The order of I(R):n = R* = q X |R'| — 1.

Now, letv = (r,z) € R, be any element in R*; where r € Fy, z € R’, then we can distinguish
the vertices into disjoint subsets:

A={(r,s):reF*seZ(R)},B={0,s):se€Z(R")},

C={0,u):ueU(R)}and D = {(r,u):r € Fj,u € U(R)}. Clearly

Al = [F*[|Z(R)], IBI = |Z(R')"], IC| = [U(RY)], ID| = [F*[|UR)]

Firstly: if v = (r,s) € A, since by Remark 2.2, there exists a positive integer t such that
:(r,s)t = (1,0), then (r,s) adjacent with every other vertices in the graph JI(R), so
deg(v)yea=IR"| — 1.

Secondly: if v = (0,s) € B, since for any s;,s, € Z(R")*, s,"V71,5,v62)=1 = 0 then v
adjacent with every element in A and B , so deg(v)yeg = |A| + |B] — 1 = |F*||Z(R")| +
|Z(R)*| - 1.

Thirdly: if v = (0,u) € C, again by Remark 2.2, there exists a positive integer [ such that
:(0,u)" = (0,1), then we have v adjacent with every element in A, C and D, so deg(V)yec =
|Al +[C| + [D] = 1 = [F*[IZ(R)| + [UR)| + [F*[[UR| - 1.

Finally: If v = (r,u) € D, since v not adjacent for any element in D, so that: deg(v)yep =
|Al +1C| = [F*[|Z(R")| + [URD]

Now, to find the size of the graph JI(R):since

m = [Seadeg(v) + Even deg(v) + Evec deg(v) + Tyep deg(v)]

=S [AR' = ) IF[1ZRD] + (P 1IZRD| + 1Z(R)'| = DIZRY'| + (FIZ(R)] +

[URD| + [F[[URD| = 1) [URD| + (IFTIZ(RD] + [URDD) [F*[[URDI]

Now put: |[R*| = |R| =1, [F*| = |F| — 1, |Z(R")*| = |Z(R")] — 1, and simplify the size of
JI(R), we get

m= %[(IFI — D(IZR)DIR] = 2) + [ZRDIF[JURDD + (ZRD] = DAZR)IIF| - 2) +

|(UR))*| @IFI = 1)~ UL

C A B

O

Corollary 3.7:
If R=F, xR/, where Fg is a field of order q, and R’ local ring with a"@~1.pv®)~1 =0 |
forany a,b € Z(R"), Then Cent(R) = {(r,s):r € F*,s € Z(R")}.
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Theorem 3.8:
Let R = R; X R; ,where Rj,R; two rings such that a
Z(R)), i € {1,2} Then:
( v =(s1,0) := [Z(RD)"[IR2| + [(R2)"| — 1
v =(0,52) = [Z(R2)"[IR3| + [(R)"| = 1
v = (ug, 0) :=|Z(RY)"|(1 + [URDD + [UR)IIRY| + [URY| - 1
deg()ymy =1 U= @) = IZRY I+ JURYD + [URYIR;] + URy)| — 1
v = (uy,52) = |Z(R3)"[(1 + [URDD + [UR)IIRY | + [URD| - 1
v = (s1,up) = |Z(RD"[(1 + [URS)D + [URDIIRZ| + [URZ)| - 1
v = (s1,82) = |Z(R)"| + |Z(RY)"| + |ZRDIZ(RY)"| — 1
W = (ug,up) 3= [URD| + [UR)| + [URDINZRZ)*| + [UR)Z(RY)"|
where s; € Z(R{)* ,u; € U(R;) and i € {1,2}.
Moreover, the order of JI(R) isn = |R;| X |R,| — 1, and
The size of (JI(R));m = %[(IZ(Ri)I-l)[ IRINCUR)?L +(ZRDIHURDINURDI) IR
+HURD| (1ZRDI-1)-21+ (1ZR)IFVL IR, [(URD+(Z(R)] +URDIUR)I) IRy
HURDI (1IZ(RI-1)-2]+|URDI [URDI (IRgl+IRz| +URDI +UR) D+ |U(RD
gU(If?{)I-l)+ [UR)| (IURD -1+ (IZ(RDIHIZ(R)I) 2-1Z(RDI |1Z(R))-1
roof:
The order of JI(R);n = R* = |R;| X |R,| — 1, to find degree of any element v = (ry,73) €
R*,where r; € R1,1, € R;. We divide the vertices into disjoint subsets:
A ={(51,0):51 €Z(R1)"}, B ={(0,52):5, € Z(Ry)"}, € = {(uy, 0):uy € U(RD},
D ={(0,uy):u, € U(Ry)},
E = {(uy,s2):uy € U(Ry),s2 € Z(R)"},
F ={(s1,uz):s1 € Z(R1)", uz € U(R2)}, G ={(s1,82):51 € Z(R1)",52 € Z(Ry)"},H =
{(uq,uz):uy € U(Ry),u, € U(RS)}, Then by Remark 2.2
ult, ulz = 1, 576, 5762 = 0, where I, 1, are positive integers
Itis obvious that, |A| = |Z(Ry)*|, Bl = |Z(R)*|, |C| = |U(RD]|
ID| = [URDLIEl = [URDIZR)|IFI = 1Z(R1)"[|U(R)I,
|G| = |Z(R)I1Z(R)*|,|H| = |[U(R))IIU(R3)|. So in the same way of Theorem 3.5 we have:
every element in A adjacent with every element in B, D, G, Fand A
deg(V)vea = |Z(R1)[IRS] + [(R2)"| — 1
every element in B adjacent with every element in A, C, G, E and B
deg(V)ver = |1Z(Ry)"|IR1| + |(R1)*| — 1
every element in C adjacent with every elementin B, D, E, F,Hand C
deg(V)vec = IZ(R)"|(1 + [URDD + [URIIR| + [URY| -1
every element in D adjacent with every element in A, C, E, F, Hand D
deg(V)vep = |1Z(R)*[(1 + [UR)D + [URDIIR,| + [UR)| — 1
every element in E adjacent with every elementin B, C, D, F, Hand E
deg(W)ver = IZ(R)*|(1 + [URDD + [UR)IIRY| + [URD| -1
every element in F adjacent with every elementin A, C, D, E,Hand F
deg(W)ver = [Z(R1)"|(1 + [UR)D + [URDIIRS| + [URS)| - 1
every element in G adjacent with every elementin A, B and G
deg(V)veg = IZ(RY)"| + |Z(R)"| + 1Z(RDIZ(R)"| — 1
every element in H adjacent with every element in C, D, E and F
deg(W)ven = IURDI + [URD| + IURDIZRL)| + [UR)Z(RL)|
To find the size of JI(R)

v(aj)—1 bV(bi)—l
't

i

=0, for any a;, b; €
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m = size(JI(R)) = %ZVGTR) deg(v), then
m = {Yven deg(v) + Tyep deg(v) + Lyec deg(v) + Xyep deg(v) + Xyeg deg(v) +
Tuer deB(¥) + Zueg deg(v) + Tven deg(v)]

m =S [UZRYNIRs) + 1(R)*| = DIZRD’| + (ZRs)NIRY |+ 1RD*| = DIZ(RS)'|

+ (IZ(RY) (1 + [URDD + [UR)IIRL + [URD| = DIURY)]
+ (IZRD(1 + [UR)D + [URDIIRE| + [URZ)| — DIURS)]
+ (IZRY)*[(X + [URDD + [URDIIRY| + [URD| — DIURDIIZRS)|
+ (IZRDI(1 + [URD + [URDIIRE| + [UR)| — DIUR)INZRY)
+ (IZRD + |Z(RY) [ + [ZRD)ZRS)*| = DIZ(R)"|Z(R3)”]
+ ([ URDI + IUR)| + [URDINZRS)|
+ [URDINZRD* DIURDINURR)I.
If we put |[Z(R)"| = [Z(RD| — 1, 1Z(R)"|=Z(RR)| — 1,
|(R)*] = |Ry| — 1and [(R3)*| = |R3| — 1, and simplify the size we get:
m= %[(IZ(Ri)I-l)[ IRIIUR))?| +(IZRDIHIURDINURDI) IRz +IUR)| (1Z(R1)]-1)-
21+ (1ZR)I-DL IR [(URDZHIZR)| +IURDIUR)I IRyl +IURDI (1Z(R3)[-1)-
21+ [URD| 1URDI (IRiI+IRz| +[URDI +[URDN+URDI (IURDI-)+ [U(R)I
(IURDI-D+ (1Z(RDIHIZ(R)) -1Z(RDI 1Z(R))-1. n

/ N\

AN

\

Figure 3.2 JI(R; X R")

Corollary 3.9:

Let R = R} x R, ,where R}, R} two rings, such that )@~ b’®>~" = 0  for any a;, b; €
Z(R)), i € {1,2}. Then cent(R)=AUBUCUDUEUF, where A, B, C, D, E and F
defined in Theorem 3.9.

4. Conclusions

In Theorem 2.3 and 2.4, for every reduced ring R, we have: (i) diam((JI(R))) < 2.
(i) w(UIR))) = x(UIRR))) = IZ(R)" |+ 1. iii- Cent((JI(R))) = Z(R)*. Moreover,
Proposition 2.5, we show JI(R) = [U(R)IK; + Kzery+|-

In Theorem 3.2, we show an extended idempotent divisor graph equal idempotent divisor
graph if and only if R Boolean ring or local ring and every element has index 2.
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In Theorem 3.3, we classify an extended idempotent divisor graph by using a diameter of it.
Finally, we give some properties when R a direct product two local rings see Theorem 3.8.
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