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Abstract

The relationship between prey and predator populations is hypothesized and
examined using a mathematical model. Predation fear, cannibalism among the prey
population, and a refuge reliant on predators are predicted to occur. This study set out
to look at the long-term behavior of the proposed model and the effects of its key
elements. The solution properties of the model were investigated. All potential
equilibrium points' existence and stability were looked at. The system's persistence
requirements were established. What circumstances could lead to local bifurcation
near equilibrium points was uncovered. Suitable Lyapunov functions are used to study
the system's overall dynamics. Numerical simulations were conducted to verify the
model's derived long-term behavior and understand the implications of the model's
primary parameters in order to support the analytical conclusions. It is observed that
the system undergoes different types of local bifurcation including Hopf bifurcation.
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1. Introduction

Less attention is paid to the dynamics of predator-prey interactions when the predator uses
other survival strategies due to a lack of food supplies, with the majority of studies in
mathematical ecology focusing on the direct predation of prey species. The Lotka-Volterra
model, which was initially published separately by Lotka and Volterra, is currently used to
describe interactions between prey and predators [1]. Consuming a member of the same species
as food is cannibalism. A typical intraspecific interaction that occurs in both aquatic and
terrestrial populations is cannibalism [2]. Cannibalism rates rise in areas with insufficient
nutrition because people turn to other members of their own species for additional sustenance.
Cannibalism controls population growth by reducing possible competition for resources like
food, shelter, and territory, which makes them more accessible. It has been demonstrated that
the prevalence of cannibalism lowers the predicted survival rate of the entire group and raises
the chance of consuming a relative, despite the fact that it may benefit the individual. As the
frequency of encounters between hosts rises, there may be additional detrimental impacts, such
as an increased risk of disease transmission. Cannibalism, however, does not as was formerly
thought only occur in extreme food shortages or under artificial or unnatural conditions; it can
also happen in a number of species under natural circumstances [3]. Accordingly, cannibalism
can occur in both the species’ prey as well as predator.

It follows that there are significant differences between the studies on various types of
predator-prey interactions and that on the classic predator-prey paradigm. However, Deng et al.
[4] discovered that prey species with a significant rate of cannibalism help them survive in the
environment and that predator species with a bigger quantity of this cannibalism propensity are
the primary causes of prey extinction. Zhang and his coauthors found system dynamics to be
significantly impacted by cannibalism and profit from cannibalism factors [5]. The stability of
the system changes numerous times when the cannibalism parameter fluctuates around the
coexistence steady state, but when there is considerable cannibalism, the system stabilizes
globally. A mathematical model that incorporates predator cannibalism and refuge was recently
considered by Rayungsari et al [6] to explain the interplay between predator and prey. To
describe food transmission, they used the Lotka-Volterra type of functional response. However,
the authors of [7] created and examined a mathematical model that takes predator cannibalism
and refuge into account to characterize the interaction between predator and prey. They made
the assumption that the population of prey contains both predator-dependent refuge and
predation fear.

In addition to cannibalism, the predator-prey interaction is also interesting to examine
because of the prey's tendency to hide from capture and attack by the predator. Ecologically
speaking, this behavior is referred to as refuge. Our understanding of the dynamic connection
between prey and predator has improved as a result of the development of analytical techniques
and computerization, which have increasingly supplied a more accurate representation of
ecological systems. A key component of predator-prey systems has been the hiding behavior of
the prey, and the effects of this behavior on stability have been examined in many models. Prey
that cannot be killed by predators in a fixed proportion or number is how refuge has traditionally
been introduced. The utilization of refuges by prey may have a stabilizing influence on predator-
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prey dynamics, according to some early theoretical studies; however, other models do not
exhibit this straightforward pattern [8]-[12]. Only a few studies [13]-[15] have used a predator-
prey model system with prey refuge proportional to both species. Even still, taking into account
prey refuge proportional to both species brings our model system closer to reality since, in some
natural systems, prey refuge may be impacted by both the number of predators and prey.

Later, a number of studies concentrated on and investigated the effect of a new kind of
predator’s impact (one that does not kill) on prey populations [16]-[21] and the references
therein. This effect, which reduces the prey birth rate, is known as fear in prey individuals.
Predator-induced fear keeps prey animals out of open settings, denying them the freedom to
carry out regular activities like mating. As a result, their capacity for reproduction is decreased
by their fear of predators. It is critical to consider the price of fear as a decrease in reproduction.
Wang et al. [16] published a prey-predator model that took into account the effect of fear on
prey reproduction. Additionally, it was explained how a high level of fear may stabilize the
system by ruling out the possibility of periodic fixes. Furthermore, Panday et al. [17] examined
how fear affected a Holling type-11 functional response in a tri-trophic food chain model. Since
the system displays chaotic behavior for smaller values of both of these variables, they came to
the conclusion that chaotic oscillations may be controlled by increasing the fear parameters. A
prey refuge is a great way to reduce the possibility that predators may use their victim's biomass
excessively.

In contrast to the above studies, in this paper, predation fear, predator-dependent refuge, and
cannibalism in the prey population are formulated and studied.

2. Model Formulation

The practice of eating another member of the same species as food is known as cannibalism.
In the animal kingdom, cannibalism is a typical ecological relationship. Therefore, a
mathematical formulation of an ecological system with a prey-predator incorporating
cannibalism in prey species is presented in this section. The model has considered both the
predator-dependent refuge and the fear of predation. Furthermore, Holling type II's functional
response serves as a representation of the predation process. In fact, fear affects the prey’'s birth
rate and makes the prey's refuge depend on the predator since the intensity of predation inhibits
the prey's population from mating properly and causes them to hide in various shelters.
Accordingly, the dynamic of the above prey-predator system can be described mathematically
in the following set of nonlinear first-order autonomous differential equations.

X = " _d, — _ a1 (A-cv)Y  eX \ _ B
ar X (1+fy dy — bX +a; Xy +X(1—c1) K2+X) =Xfi(X,Y) = F,(X,Y) o
av _ azX(1-cy) _ 3

ar (K1+X(1—cY) dZ) = YH(X,Y) = F,(X,Y)

where all the coefficients are positive constants and can be described in table (1).

It is clear from the system (1) that the interaction functions F;(X,Y) and F;(X,Y) in the
right-hand side of the system (1), are continuous and have continuous partial derivatives on the
domain RZ = {(X,Y) € R%: X > 0,Y > 0}. Hence, they are locally-Lipschitz functions in R2.
Consequently, due to the fundamental existence and uniqueness theorem, it is obtained that
system (1) with any non-negative initial condition X(0) > 0, and Y (0) > 0 there exists T > 0
so that the system (1) has a unique solution defined in R2.
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Table 1: Variables and parameters description
Variables and Parameter Description

The population size of the prey at time T
The population size of the predator at time T
The prey birth rate
The prey’s natural death rate
The prey intraspecific competition
The prey’s fear level, which is involved in the fear function ﬁ
The attack rate

The half-saturation constant.

The prey’s refuge rate; hence the refuge amount is cXY, which leaves X (1 —
cY) of the prey available to be hunted by the predator

The conversion rate of prey biomass into predator birth
The conversion rate of cannibalism into prey birth
The predator’s natural death rate
The cannibalism rate in prey.

The half-saturation constant of cannibalism

3. Properties of the solution
This section treats the properties of the solution of system (1), such as positivity and bounded
as shown in the following theorems.

Theorem 1. All system (1)’s solutions with initial values (X(0),Y(0)) € R% are non-negative.
Proof. From the equations of the system (1) with the given initial value it is clear that the
solution can be written as:

X() =X(0)exp [f (

Similarly,
t( aX(uw)(@A-cY(u

Y(t) =Y(0) exp [fo (K;;(i)(u—cy((i;) - dz) du]
Therefore, if X(0) = 0, and Y(0) = 0 then it is obtained that X(t) = Y (t) = 0 for all the time.
Thus due to the positivity of the exponential function in the above two equations, it is concluded
that X(t) = 0, and Y (¢t) = 0 indefinitely. Hence the proof is complete.
Now, before the uniformly bounded system (1)’s solution is proved, the following two lemmas
given by Chen [22] are presented.

a;(1-cy(w)y(w) _eXw )du]

— dl — bX(u) + as — Ki+X(Ww)(1—cY(u)) K2 +X(w)

1+£Y ()

Lemma21[22]:Ifa>0,b>0,and x" = (<)b — ax,whent > 0, and x(0) > 0, we have
x(0) 2 ()z|1+ (B2 -1)e |

Lemma?2.2[22]:1fa > 0,b > 0,and x" = (<)x(b — ax®), when a is a positive constant, t >

0, and x(0) > 0, we have

x(t)Z(S)() (e 1)e_bat]-1/“_

Theorem 2: All system (1)’s solutions that initiate in the positive quadrant are uniformly

bounded.
Proof: From the first equation of system (1), it is obtained that

2 < X(r+ a5 —dy — bX).
Therefore, by applying lemma (2.2), it is reached:
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r+az—dq r+az—di \,—1 _ —(r+as—d{)T
X(T) < (B2 [1 4 (B2 X1(0) — 1) e~(Hes—aT |
Therefore
Tlim sup X(T) Sr+az_d1
LetW =X + %Y, then it is obtained that
2

=T+ 0TS (r+as—d)X -2 dY 2 X,
which gives that:
C;—V:+d2WS (r+az+d,—dy)o; =0,
Therefore, by applying lemma (2.1), for T — oo it is obtained that
supW(T) < Z—z.

Hence the proof is complete.

= 03.

4. Equilibrium points and stability analysis

It is clear that system (1) has two equilibrium points belonging to the boundary axes while
the system has at least one positive equilibrium point in the interior of the first quadrant under
the specific conditions determined below. These points can be described below.
The vanishing equilibrium point (VEP) P, = (0,0) always exists.

The axial equilibrium point or predator-free equilibrium point (AEP) P, = (m,0), where m
represents the positive root of the equation
X2 _ (r—e+a3—d1—bK2)X _ Kp(r+az—dy) -0 (2)
b b
Clearly, the term r + a3 — d, is positive, which is known as the prey’s survival condition, hence

equation (2) has a unique positive root given by

m = (r—-e+az—dq{—bkK3) + l\/((r—e+a3—d1—b1{2))2 44 (Kz(r+a3—d1)). (3)

2b 2 b b
Furthermore, if r + a; — d; < 0 then the coefficients of equation (2) do not change the sign
and thus equation (2) has no positive root, which leads to the extinction of X.
The coexistence equilibrium point (COEP) P; = (X*,Y™), where

X* dZKl (4)

— (1-er)(az-dyp)’
While Y™ represents a positive root of the fifth-order polynomial equation
AgYS + A Y+ AY3 + AY2 + ALY + A = 0, (5)
where
Ay = S fa Ky (ay — dy)°.
A = _sza1d2K1(a2 —dy)? + c*a;K,(c— 3f)(a; — dz)s-
A, = aycKidy(a; — dy)*(2f — ) + 3a,cK,(ay — dy)* (f — )
+c?fa K Ky (az — di)(az — dy)? .
Az = aydy K (f — 2¢)(ay + d3)? + dyK{cfay(e — az + di)(a; — dy)
+a,K,(3c — f)(a, — d,)? + ca,K K, (a, — dz)z[cr + (a3 — dy)(c — 2f)]
+bcfayd, KE Ky (ay — dy)
Ay = —aydyK, (ay — dy)? + a,d,Kf (ay — dy)[—cr + (c = f)(e — az + dy)]
_bfazdgKf — a;K,(a; — d;)® — ayK Ky (ap — dy)?[2cr
+(az — dy)(2c = )] + ba,d,K{K,(a; — d3)(c = f)
As = —azdef(az —dy)[(e—71)—(az—dy)] — bazd%Kf
+a,K Ky (ay — dy)?(r + az — dy) — ba,d, KL K, (a; — dy)
Obviously, for the positivity of X*, the following condition should be satisfied.
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d, < a,. (6)
Moreover, since condition (6) leads to A, > 0 always, then equation (5) has a unique positive
root provided that one set of the following sets of conditions holds.

A; >0,4,>0,4,<0,4;<0

A; > 0,4, >0,4; > 0,45 <0 .

A1 > 0,43 <0,4,<0,4; < 0" (7)

A; <0,43<0,4,<0,4; <0
Otherwise, equation (5) has at least one positive root provided that A; < 0.

The stability analysis of the above equilibrium points is investigated using the linearization
technique. The Jacobian matrix (JM) of the system (1) at the point (X,Y) is computed in order
to examine the local asymptotically stability (LAS) of each equilibrium point.

The general JM of the system (1) is given by:

9f 9fr
Xax+f1 Xay

= e e | ®)
ax ay 72

where f; and f, are given in the system (1), while
f1 _ b+ Y(1-cY)?a, ek
ax (X(1=cY)+K1)2  (X+K3)2
%_ __Jr cXY(1-cY)aq _ (A-2cY)ay
Y  (1+fY)2  (X(1—cY)+K1)?2  X(1—-cY)+K;
% _ K1(1—CY)a2
X~ (X(1—cY)+K;)2
% — K]_CXGZ
Y (X(1—cY)+Kq)?'

Accordingly, the JM at the VEP can be written as:
_[r—=dy+a3 O

]P1 - 0 —d, (9)
Hence, the eigenvalues of J, are given by:

A =r—dy +as, 1, = —d,. (10)
Thus, VEP is LAS if and only if the following condition is met.

r+as; <d;. (12)

Clearly, condition (11) leads extinction of the X and hence extinction of Y. However, the VEP
is a saddle point when condition (11) is reflected.
The JM at the AEP can be determined by:

_ eK, _ aq
m (b + (m+K2)2) m (fr + m+K1)

]PZ = ma, (12)
0 —d;
m+Kq
Hence, the eigenvalues of ], are given by:
_ ek, _ ma;
Ay =-m(b+ —(m+K2)2), hop = 72— dy. (13)
Thus, AEP is LAS if and only if the following condition is met.
ma;
— <d,. (14)
Otherwise, it is saddle point if the condition (14) is reflected.
The JM at the COEP can be written as follows:
. [an ‘112] (15)
Jes = Azy Azl
where
oy _ Y*(1-cY*)?a, ek,
a1y = —X (b (X*(1—cY*)+K,)? (X*+K2)2)’
Qo = — *( fr cX*'Y*(1-cY"aq (1-2cYMaq )
1z = (1+fY92 | (X*(1—cY")+K;)2  X*(1—cY*)+K )’
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Qor = Kia,(1—-cY*)Y*
21 7 (x*(1—cY*)+Kq)?
KiacX*Y*
(X*(1—cY*)+Kq)?
The characteristic polynomial of Jp, can be determined as:

A% —Trp,A + Detp, = 0, (16)
where Trp, = a;; + ay,, and Detp, = aj1a;; — ag2a2;. Clearly, equation (16) has the
following roots (eigenvalues):

Ao = Trp,+ /(TT};B)Z—‘I—Detpg Ay = Trp,— /(Trp3)2—4Detp3 17)
According to the Routh Hurwitz criterion, the two roots A3 and 132 have negative real parts if
and only if Trp, < 0, and Detp, > 0. Therefore, direct computation shows that the COEP will

be LAS if and only if the following sufficient conditions hold.
ra_ N2
(XY ((11 cCYY))+;11)2 =b+ (X*eflffz)Z' (18)
Yr < Z (19)
However, the COEP becomes:
Unstable point if and only if Trp, > 0, and Detp, > 0.
Saddle point if and only if Detp, < 0.

Linear centre if and only if Trp, = 0, and Detp, > 0.

>0,

Ay = — <0

5. Persistence

This section delves into the concept of persistence. Persistence in biology refers to the continued
survival of all populations indefinitely whenever they initially exist. Mathematically, system
(1) is said to be uniformly persistent if there exists a compact region U C int.R% such that
every solution ®(T) = (X(T),Y(T))T of system (1) with positive initial condition eventually
enters and remains in region U, see [22]. Then the conditions that guarantee the system (1)’s
uniform persistence is given in the following theorem

Theorem 3: System (1) is uniformly persistent under the following conditions
di <r+a;

d < a,m }
2 Ki+m

Proof: Define the function ¢(X,Y) = X*Y#, where a and S8 are positive constants. Clearly

o(X,Y) >0 for all (X,Y) € int.R2 and ¢(X,Y) — 0 when X - 0 or Y — 0. Furthermore,

it’s clear that

¢_’_ng Bar
(p_XdT Y dT =afi +bfa

where f; and f, are given in the system (1). Thus

(’;— _ a;(1-cv)y axX(1—cy)
® a’[ dy —bX +az — Ki+X(1—cY) K2+X] ﬁ[K1+X(1—CY) 2]

According to the Lyapunov average method [23], if £ ” > 0 for all the boundary equilibrium

(20)

1+fY

points, then the solution of system (1) initiates in int. R eventually enters and remains in
int. R2 for suitable choice of constants @ > 0 and g > 0. Now, since

(p_(P1) = a[r —dy + a3] + B[—d,].
_ a,m
(PZ) B [K m ]
Then the first expression is positive as the positive constants a and £ are arbitrary constants
and we are always can choose that « is sufficiently larger than £. Hence, the requirements of
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the Lyapunov average method are met provided that the conditions (20) hold, which means
system (1) is uniformly persistent.

6. Local Bifurcation

This section uses an application of Sotomayor's theorem [24] to identify the potential for
local bifurcation. It is well known that the likelihood of local bifurcation is dependent on several
conditions, one of which is the existence of a nonhyperbolic equilibrium point type. In the
following theorems, the candidate bifurcating parameter is correspondingly chosen to ensure
that the analyzed equilibrium point is not a hyperbolic point. Now rewrite system (1) in the
vector form as:

dwW X Fl(X'Y'.u)>

— = FW,), W= (Y) wER, FWn) = (Fz(X' Y, 1) -

Hence, the second directional derivative of F, where V = (v;, v,)T be any vector, can be written
using direct computation as:

P _ (C11
D2ZF(W, ). (V,V) = (C21), (22)
where
_ 2[b(X+Kp)%+eKZ|vi  2frviv, | 2f%rXvi | 2a;KiY(1—cY)?vi
€11 = — (X+K,)3 T (A+fE | A+fr)3 (X(1—-cY)+K;)3
20, K, cX(X+K)v3  2a,K[X(1—cY)+(1-2cY)K v1v,
(X(1-cY)+Kq)3 N (X(1—-cY)+K )3
24K Y(1-c)wZ | 20K [X(1-cY)+(1-2¢V)K Jv1v;  2a,K1cX(X+Kq)v3
€21 = — (X(1—cY)+K,)3 (X(1—cY)+K;)3 T (X(A=cY)+K)3

Theorem 4: When the parameter d, crosses through the value di = r + a3, a transcritical
bifurcation (TB) of the system (1) occurs at the VEP.
Proof: From the JM that is written in equation (9), it is observed that, for d; = dj it becomes

0 0
As aresult, /;'s eigenvalues are A7, = —d,, which is negative, and A7; = 0, which is zero. As
. . . _ (V11 _ (U1
a consequence, the VEP fails to be a hyperbolic point. Allow V; = (vm) and U; = (u21) to

represent the eigenvectors for A3; =0 and its transpose, respectively. Then, using
straightforward mathematical procedures, it is concluded that:

- ()0~ (1)

Direct calculation also reveals that:
-X ~ _ (0
Fdl(W, d;) = ( 0 ) = Fdl(Pp di) = (O)

This gives that U; "F,, (P, d}) = 0.

U, "[DF,, (P, d])V,| = —1 # 0,
where DF, (Py,d7) represents the directional derivative of F, (W,d;) at (P,d}).
Additionally, the equation (22) yields the following conclusion.

_2(€+bK2)
D?F(Py, d7). (Vy, V) = ( k2 )
0
Hence, it is simple to verify that U, [D2F(P,,d}). (Vy, Vy)] = —Z(e;bKZ) # 0. Thus, the
2

Sotomayor theorem of local bifurcation [24], specifies that the system (1) possess a TB at the
P;, and that completes the proof.
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Therefore, it is easy to confirm that U, " [D2F(Py, d}). (V1,V;)] = — Z(e;r(sz)
2

thus complete because the Sotomayor theorem of local bifurcation states that the system (1) has
a TB at the P;.

# 0. The proof is

Theorem 5: When the parameter a, crosses through the value a; = W, a TB of the

system (1) occurs at the AEP.
Proof: From the JM that is written in equation (12), it is observed that, for a, = a; it becomes

ek, a;
J2 = ]PZ,GE = l_m (b + (m+K2)2) —m (fI‘ + m+K1)l.
0 0
As a result, J,'s eigenvalues are 13, = —m (b + i) which is negative, and 15, = 0,

(m+K,)?
v12)
and
VU2

which is zero. As a consequence, the AEP fails to be a hyperbolic point. Allow V, = (

U, = (ulz) to represent the eigenvectors for A5, = 0 and its transpose, respectively. Then,
using straightforward mathematical procedures, it is concluded that:

_ [fr(m+Kq)+a;](m+K,)>?
Vv, = < [b(m+K2)2+eK2](m+K1)> = (yl), U, = (O)

1 1 1
Direct calculation also reveals that:
0 0
Fo,(W, a;) = <yM> = Fo, (P a3) = ()
Ki+X(1—cY)
This gives that U, F,, (P,, a}) = 0.
U [DFq, (P, )V ] = - # 0,

where DF,, (P,,a;) represents the directional derivative of F, (W,a;) at (P, aj3).
Additionally, the equation (22) yields the following conclusion.
D?F(Py, a3). (V,, V) =
_ 2[bOn+K;)3 +eK3|yE
(m+K,)3

_ 2 2a1chm _ ZalKlyl
2fryi+ 2fTrm + I E T Gnaky?

« [ 2K1iv1 2Kicm
a2 ((m+K1)2 B (m+K1)2)
Hence, since y; < 0, it is simple to verify that:
Trpn2 * _ o+ (_2Kiya  2Kicm
U, T[D2F(Py, a3). (Vo, V)] = @ (s — Z2200) <.
Thus the Sotomayor theorem of local bifurcation, specifies that the system (1) possess a TB at

the P,, and that completes the proof.

Theorem 6: Assume that condition (19) holds, then the system (1) possesses a saddle-node
bifurcation (SNB) at COEP when the parameter b crosses through the value b* =

Y*(1-cY)? K. . . .
A-cv)a __eMs G121 g he following requirements are met.
(X*(l—CY)+K1)2 (X*+K2)2 X*azz

ek, 12051 Y*(1-cY)?a,
(X*+K,)? X*ay, (X*(1—-cY)+K)?' (23)
c11(P3,b")y3 + c21(P3,b™) # 0. (24)

where all the new symbols are given in the proof.

Proof: From the JM that is written in equation (15), it is observed that, for b = b* it becomes
I3 =]P3,b* = [a?j],

where aj; = a,1(b%), aj, = aq,, a3; = a,q1, and a3, = a,,. Straightforward computation

shows that the determinant of /; at b = b* (i.e. Detp, ,+) is zero. Then J; has zero eigenvalue
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(A3, = 0) with the second eigenvalue A3, = Trp, ,+. Thus, the COEP is a non-hyperbolic point
when b = b*.

v u _ :
Allow V, = (UZ) and U; = (u;z) to represent the eigenvectors for A5, = 0 and its transpose,
respectively. Then, using straightforward mathematical procedures, it is concluded that:

__ Q12 (V ) __ Q21 (V )
V3:< a;1>: 2,U3:< a;1>: 3.
1 1 1 1
According to the elements of J; and the condition (23), it is observed that y, > 0, and y; < 0.
Direct calculation also reveals that

B,W,5) = () 5 Rypo b0 = (7X7)
This gives that U3 TF, (Ps, b*) = —y3X** > 0. Moreover, from the equation (22), the following

finding is obtained
D2E(P;, b"). (Vs V5) =

c11(Ps, b*))1

c21(P3, b™)
where
P. b*) = 2[b*(X*+K;)3 +ekZ]|y2 2f1Y2 2f%rx* 2a.K Y*(1—cY*)?y?
c11(P3, b") = — (X*+K5)3 T A+fYO2 T (1+fY")3 (X*(1—cY*)+K,)3
2a1K1cX*(X*+K1) 2a1K1[X*(1—cY*)+(1-2cY*")K1ly> '
(X*(1—-cY*)+Kq)3 N (X*(1—cY*)+Kq)3
P b*) _ 2a,K Y (1—-cY™)?yZ | 2a,Kq[X*(1—cY*)+(1-2cY*)K ]y, _ 2a,K1cX*(X*+K1)
€21 (Ps, - (X*(1—cY*)+K,)3 (X*(1—cY*)+K;)3 (X*(1—cY")+K;)3"

Therefore, it is easy to confirm that using the condition (24).

U3T[D2F(P3' b*).(V3,V3)] = ¢11(P3,b™)y3 + c21(P3,b") # 0.
The proof is thus complete because the Sotomayor theorem of local bifurcation states that the
system (1) has an SNB at the P;.

7. Global stability
Here, we provide the result to attain global asymptotic stability (GAS) for each equilibrium
point of the system (1).

Theorem 7: The VEP is globally asymptotically stable whenever it is LAS.

Proof: Consider the scalar function V; = X +Y.

Obviously, V;: R2 - R, such that V;(P;) = 0 and V;(u,v) > 0, V (u,v) # P, with (u,v) €
RZ.

Accordingly, V; is a positive definite function. The derivative of V; can be determined as

av _ dx @ _dX —
d_T_dT+dT<(T+a3 dl)X sz

Therefore, due to local stability condition (11), it is obtained that % < 0and &2

V1
d ar
P; that means d—‘;} is a negative definite function. Moreover, since V; (W) — oo whever ||[W|| —

= 0 only at

oo with W = ();) then it is a radial unbounded function. Therefore, according to the global
stability theorem [25], the VEP is a GAS.

Theorem 8: The AEP is a GAS provided that

m(rf +a;) <d,. (25)
Proof: Consider the scalar function V,, = (X —m—mln (%)) +Y.
Obviously, V,: RZ2 - R, such that V,(P,) = 0 and V,(u,v) > 0, V (u,v) # P, with (u,v) €
RZ.
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Accordingly, V, is a positive definite function The derivative of V, can be determined as

av, _ (X-m) dX av . . . . a;(1-cY)Y
ar =~ x dT =& - m)[ 1+fY b(X —m) K, +X(1—cY)
. Ky (X—m) aX(1- cY)Y_
((K2+X)(K2+m))] + K1+X(1—cY) dyY
Therefore

ave _ K3 _ 2 rfXY | rfmy a;m(1-cY)Y _
daTr = [b te ((K2+X)(K2+m))] (X m) 1+fY t 1+fY + Ki+X(1-cY) dZY

— [b +e ((Kz +X;<(2K2 = m))] X —m)?—[d, —m(rf +a)]Y

Therefore, due to condition (25), it is obtained that % < 0 and % = 0 only at P, that means

% is a negative definite function. Moreover, since V,(W) — oo whever ||W|| — co with W =

();) then it is a radial unbounded function. Therefore, according to the global stability theorem,
the AEP is a GAS.

Theorem 9: The COEP is a GAS provided that the following conditions are met.

a;[(1—-cY)(1—cY*)Y™ ] eK,
AsA A1A1 +b+ e (26)
p12° < 4p11P22- (27)

where all the new symbols are given in the proof.

: : . . « X . . Y
Proof: Consider the scalar function V5 = (X —X"—X"In (X—)) + (Y —Y*"=Y"In (Y—))
Obviously, V3: R2 - R, such that V5(P;) = 0 and V5(u,v) > 0, V (u,v) # P; with (u,v) €
RZ.

Accordingly, V5 is a positive definite function. The derivative of V5 can be determined as
avs _ (X-X)dx  (Y-YHady _ —L(X — X2 —b(X — X*)?
ar X dT Y dT AN
a[(1—cY)(1—cY*)r"] X — X*)z
A3\
a [A5—cAS(Y+Y*)+X*Y'Y]
AzA}

eK2

A (X —X0)*

X —X*)(Y -Y")

azK;(1—cY) * *
$ 2D X XY ¥ -

ach*(K1+X*) (Y . Y*)Z
AzA}
where
A=+ fY),N =@+ fY), Ay, = (K, + X), A5 = (K, + X%).
Az =K+ X(1—cV)], Ay = [K; + X*(1 = cY)].
Therefore, it is obtained that

avs _ _ a1[(1=cY)(1—cY*)Y*] ek, 2 a,cX*(Ki+X%) oy 2
ar [A1A1 +b AsA AzAz] X -Xx)" - AsA ¥ —=Y"
_ a1[A5—cAS(Y+Y*)+X*Y*Y]—-a,K1(1-cY) oy e

e e e ey -

—[p11(X = X*)? + p12(X = X)(Y = Y*) + ppa (Y —Y")?]
Now, using the conditions (26)-(27), it is obtained that

s < —[Jo X =X + oY =y

Obviously, d—T is a negative definite function, which is % = 0 only at P;. Moreover, since

V3(W) — oo whenever ||W]|| = oo with W = ();) then it is a radial unbounded function.

Therefore, according to the global stability theorem, the COEP is a globally asymptotically
stable.
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8. Hopf bifurcation

The Hopf bifurcation occurrence at the COEP is analyzed by selecting a, as the bifurcation
parameter. According to the JM at P; given in equation (15), the characteristic equation was
determined in equation (16) depending on JM’s trace (Trp3 =aq;; + azz) and determinant
(Detp, = asyaz; — a12a,1), Where a;;,i,j =12 are the JM elements. Therefore, the

following theorem provides the necessary and sufficient condition for having a Hopf
bifurcation.

Theorem 10. When the parameter a, passes through aj, the system (1) undergoes a Hopf
bifurcation around COEP provided that the following condition is met.

" ek, fr(1-cY*) . (1-cy*)(1-2cY*aj
2 (b + (X*+K2)2) + ((1+fY*)2 + X*(1—cY*)+K, ) >0, (28)
where
« _ Kiaper® (X*(1=cY*)+Kq)? ek,
a = Y*(1—cY*)2 Y*(1-cY*)2 (X*+K2)2]'

Proof. At a; = aj, the Trp, = a;; + a;; = 0, and hence the characteristic equation (16)
becomes

A? + Detp, = 0. (29)
Moreover, since Detp, = a11a,, — A42A71, hence Detp, (a;) > 0 under the condition (28).

Clearly, the equation (29) has roots 4, =i [Detp,(aj) and 1, = —i /Detp3 (a3). Thus JM of
the system (1) has two purely imaginary eigenvalues at (Ps,aj).

Note that, Trp, and Detp, are smooth functions of a,. Therefore, in the neighbourhood of a;,
the characteristic equation (16)’s roots are written in the form

2
Trp,+ / Trp,) —4Detp,

2

)
2
Trp,— ,(TTPS) —4Detp,
)

2

A =o01(ay) +ioy(ay) =

Ay = 01(ay) —ioy(ay) =
where g;(a,); i = 1,2 are real functions.
Now, due to Hopf bifurcation theorem [1], the proof follows if the transversality condition
d . . g
d—alRe Ai(a1)|q,=a; # 0 is satisfied.
TTP3
2
d
Re A;(a;) = d_al01(a1) =

Since Re A;(a,) = 0,(a;y) =
4
da1

. d
Accordingly, d—alRe Ai(@)|a,=a:

, then direct computation gives that:
X*Y*(1—cY*)?

(X*(1—cY*)+Kq)?'

_ X'v*(1-cy)?

T (X*(1-cY")+K,)? # 0.

Hence, the system (1) undergoes a Hopf bifurcation at P; when a; = a;.

9. Numerical simulation
In this section, a few numerical simulations were run using MATLAB code for solving and
drawing the phase portrait and Mathematica of version 12 for the preparing the direction field
to test our analytical conclusions and investigate the impact of parameters on the dynamical
behavior of the system (1). Accordingly, System (1) with the following hypothetical fixed
parameters Dataset is investigated.
r=2,f=0.2b=024d; =0.1,a, = 0.5,c = 0.4

Kl = 1, a, = 025, a3 = Ol,e = 04‘, KZ = 1, dz = 015 (30)
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It is observed that for the dataset (30), system (1) has a unique COEP given by P; =
(5.18,1.77) which is an asymptotic stable point and two boundary saddle points P; = (0,0)
and P, = (8.21,0) as shown in figure 1. In the following figures, the red and black points
represent the equilibrium points and initial points respectively, while the black arrows represent
the direction of the trajectories.
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Figure 1: For Dataset (30), the system (1)’s (a) Phase portrait. (b) Existence of equilibrium points and direction
field.

According to Figure 1, it is clear that the trajectories from different initial points approach
asymptotically to the unique COEP. Moreover, a direction field is a mathematical object that
graphically represents solutions to a first-order differential equation so that a line segment
appears at each point with a slope equal to the slope of a solution to the differential equation
passing through the corresponding point given in the phase portrait.

The influence of varying the parameters on the system (1)'s dynamical behavior is investigated
numerically. The obtained results are drawn in the form of phase portraits and direction fields.
For the parameter r, it is observed that for the range r € (0,0.55) the COEP disappears and the

AEP becomes an asymptotic stable point, see Figure 2 at a selected value.
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Figure 2: For Dataset (30) with r = 0.5, the system (1)’s (a) Phase portrait approaches to P, = (1.35,0). (b)
Existence of equilibrium points and direction field.

The effect of varying the parameter f is investigated in Figure 3.
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Figure 3: For Dataset (30) with different values of f, the system (1)’s (a) Phase portrait for f = 10 approaches
to P; = (1.64,0.22). (b) Phase portrait for f = 25 approaches to P; = (1.56,0.09). (c) Phase portrait for f =
50 approaches to P; = (1.53,0.05). (d) Phase portrait for f = 150 approaches to P; = (1.51,0.01).

According to Figure (3), although system (1) approaches COEP for different values of f, the
predator population decreases approaching zero as the value of f increases.

The effect of changing the parameter b on the dynamics of the system (1) was investigated
using the data set (30) with different values of b and the obtained results were presented in
Figure 4. It is evident from Figure 4 that the asymptotically stable COEP gradually approaches
the AEP, and coincides with each other at b = 1.18.
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Figure 4: For Dataset (30) with different values of b, the system (1)’s (a) Phase portrait for b = 0.5 approaches
to P; = (2.51,1). (b) Existence of equilibrium points and direction field for b = 0.5. (c) Phase portraitfor b = 1
approaches to P; = (1.63,0.2). (d) Existence of equilibrium points and direction field for b = 1. (e) Phase
portrait for b = 1.18 approaches to P, = (1.49,0). (f) Existence of equilibrium points and direction field for b =
1.18.

Figure 5 investigates the influence of varying the parameter a, on the dynamic behavior of the
system (1). It is observed that the behavior of the trajectories of system (1) near the COEP with
increasing the value of a, transfers from nodal sink to spiral sink, then becomes unstable at
a, = 4.24 and a Hopf bifurcation occurs. However the boundary points are saddle points.
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Figure 5: For Dataset (30) with different values of a, , the system (1)’s (a) Phase portrait for a; = 2 approaches
to nodal sink P; = (3.71,1.49). (b) Phase portrait for a, = 4 approaches to spiral sink P; = (2.37,0.92). (c)
Trajectory approaches to small limit cycle around the source point P; = (2.3,0.87) for a; = 4.24. (d) Trajectory
approaches to bigger limit cycle around the source point P; = (2.23,0.82) for a; = 4.5.

Clearly, Figure 5 ensures the obtained theoretical results regarding the Hopf bifurcation. The
influence of varying c on the dynamic of system (1) is investigated Figure 6.
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Figure 6: For Dataset (30) with different values of c, the system (1)’s (a) Trajectory approaches to a spiral sink
P; = (1.55,3.33) for ¢ = 0.01. (b) Phase portrait for ¢ = 0.25 approaches to a nodal sink P; = (4.09, 2.53). (c)
Phase portrait for ¢ = 0.75 approaches to a nodal sink P; = (6.34,1.01). (d) Phase portrait for ¢ = 0.99
approaches to a nodal sink P; = (6.72,0.78).

The influence of varying the parameter K; on the system (1)'s dynamic is explained in Figure
7. Itis observed that for the range K; € (0.01,0.09) there are three COEPs, source, saddle, and
nodal sink while the boundary equilibrium points are saddle points. While increasing the value
of this parameter gradually makes the COEP approaches AEP, they coincide with each other at
K, = 5.48.
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Figure 7: For Dataset (30) with different values of K;, the system (1)’s (a) Phase portrait for K; = 0.08
approaches to a nodal sink P; = (4.25,2.42). (c) Phase portrait for K; = 2.5 approaches to a nodal sink P; =
(6.33,1.02). (e) Phase portrait for K; = 4.5 approaches to a nodal sink P; = (7.62, 0.28). (g) Phase portrait for
K; = 5.5 approaches to a nodal sink P, = (8.21,0). (b), (d), (f), and (h) are the direction fields for K, =
0.08,2.5,4.5, and 5.5 respectively.
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Figure 8 demonstrates the influence of varying the parameter a, on the dynamic of the system
(1). It is noted that for the range a, € (0,0.16) the COEP does not exists and the AEP is nodal
sink. Otherwise, the system (1) approaches asymptotically to COEP.
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Figure 8: For Dataset (30) with different values of a,, the system (1)’s (a) Phase portrait for a, = 0.15
approaches to P, = (8.21,0). (b) Existence of equilibrium points and direction field for a, = 0.15. (c) Phase
portrait for a, = 0.17 approaches to P; = (7.92,0.13). (d) Existence of equilibrium points and direction field
for a, = 0.17.

The influence of the parameter a; on the dynamic of the system (1) is studied numerically.
It is noted that system (1) still approaches COEP asymptotically with quantitative change in the
population size. However, decreasing a; together with r so that the prey’s survival condition is
reflected makes the system (1) approaches asymptotically to the VEP as shown in Figure 9.
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Figure 9: For Dataset (30), the system (1)’s (a) Phase portrait for a; = 0.01 and r = 0.08 approaches nodal sink
P; = (0,0). (b) Existence of equilibrium points and direction field.
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The influence of the parameter e on the dynamic of system (1) is investigated in the Figure 10.
It is clear from the Figure 10 that as e increases the COEP approaches gradually to AEP, they
are coincide with each other at e = 2.84.
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Figure 10: For Dataset (30) with different values of e, the system (1)’s (a) Phase portrait for e = 1 approaches
to a nodal sink P; = (3.36,1.38). (c) Phase portrait for e = 2.5 approaches to a nodal sink P; = (1.63,0.21).
(e) Phase portrait for e = 2.84 approaches to a nodal sink P, = (1.49, 0). (b), (d), and (f) are the direction fields
fore = 1,2.5, and 2.84 respectively.

Finally, Figure 11 demonstrates the influence of d, on the dynamic of the system (1). It is noted
that as d, = 0.24 the COEP disappears and the system (1) approaches asymptotically AEP.
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Figure 11: For Dataset (30), the system (1)’s (a) Phase portrait for d, - 0.24 approaches nodal
sink P, = (8.21,0). (b) Existence of equilibrium points and direction field for d, = 0.24.

Finally, the influence of the parameter f on the existence of limit cycle that shown in figure
5d is studied and the obtained result is presented in Figure 12. It is noted that the increase of the
value of f lead to stabilize the system (1).

X

Figure 12: For Dataset (30), with a; = 4.5 and f = 0.5 the system (1)’s Phase portrait approaches spiral sink
P; = (2,0.63).

10. Conclusions

In this paper, the prey-predator model involving cannibalism and predator-dependent refuge
in the prey population had been proposed and studied. All the properties of the solution were
investigated. All possible equilibrium points were determined by their existence conditions. The
local stability analysis of the model had been studied. It was obtained that all the equilibrium
points are conditionally locally stable. The persistence requirements were obtained. It was
proved that system (1) undergoes a TB near the boundary equilibrium points, while an SNB
was detected near the COEP. The global dynamics of the system (1) were studied with the help
of the Lyapunov function. Finally, the system was investigated numerically to confirm the
theoretical findings and detect the parameters' influence on the system (1)'s dynamic behavior.
The numerical simulation results are summarized as follows.
For Dataset (30), system (1) has two saddle boundary equilibrium points and asymptotic stale
COEP. Decreasing the prey’s birth rate or the conversion rate of prey biomass into predator
birth below a specific value leads to extinction in the predator population and the system (1)
approaches AEP asymptotically. Rising the prey’s fear level has a stabilizing effect on the
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dynamic behavior of the system up to vital value then the system loses its persistence and
approaches to AEP. When prey intraspecific competition rises above a certain threshold, the
predator population goes extinct and system (1) gets closer to AEP. Regarding increases in the
value of the prey's natural death rate or predator’s natural death rate or cannibalism rate in prey,
a similar influence on the system's dynamic behavior (1) had been registered as observed in the
case of the prey's intraspecific competition. On the other hand, the rise in the prey’s refuge rate
causes an increase in prey population and a decrease in the predator population but the system
(1) still approaches COEP. While decreasing the half-saturation constant of the prey results in
the existence of multiple COEPs, however, raising this value above the critical value causes
extinction in the predator population and the system (1) approaches AEP. Finally, decreasing
the conversion rate of cannibalism into prey birth and the prey’s birth rate simultaneously causes
extinction in both populations and the system (1) approaches VEP.
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