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Abstract

We examine the integrability in terms of Painlevé analysis for several models of
higher order nonlinear solitary wave equations which were recently derived by
Christou. Our results point out that these equations do not possess Painlevé property
and fail the Painleve test for some special values of the coefficients; and that
indicates a non-integrability criteria of the equations by means of the Painleve
integrability.
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1 Introduction
A variety of new nonlinear partial differential equations were recently introduced in the work of
[1] from applying a different type of techniques; The author managed to exploit fundamental physics
laws, Taylor series expansion and Hirota’s bilinear operator to derive some higher order solitary wave
equations. The first model, the sixth order solitary wave equation using Ohm’s law is given by

2 2 2 —

Uge = Crllyx — ZCz_ux — 2CoUUy, + 6C3UUY +_3c3u Usx — Callxxxx ~ CslUxxxxxx = 0, @
where u is a function of x and t, the subscripts denote to partial derivatives with respect to the
. . __h? 1 _ 1 _ (1286+1)h*  _ (608+1)h°® _ Qo
independent variables, and ¢; = AT 377 e FTN A rrryw, and C, = o

The @, is the charge on the capacitor, F, is Faraday’s constant, L is the length on the C, capacitor, h
is a small parameter of the Taylor expansion and & controls the triple interactions between sections
and must be non-negative.

The travelling wave solutions for the equation (1) was obtained in [2] by using the improved
generalized tanh-coth method. The second model, the sixth order solitary wave equation using
Hirota’s bilinear operator is given by

—Ug + 2Usy — 15UZ, — 30U Uy — 15UUpxy + I0UUZ + 45U Uyy — Uspyax
FUxxxzzx = 0. (2)
The third model, the sixth order Sine-Gordon equation is written as
O — Cg Oxx — Clzexxxx - szaxxxxxx = C%Sin(e), 3
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where 6 is a function of x and ¢, and cjz ,j = 0,1,2,3 are some physical quantities.

We shall inspect Painleveé integrability for the equations (1), (2) and (3); and the integrability means
here is that the differential equation does have Painlevé property. For a given partial differential
equation F(w, u,, ,uUy,, Uy, ,,,---) = 0, where u is a function of z,,z,,...,z,, is said to have the
Painlevé property if solutions are single valued about non-characteristic movable singularity
manifolds, and these manifolds are determined by the condition of the form &(z;,z,,...,2,) =0,
where @ is an analytic function. In other words, if u(z,, z,, ..., z,) is a solution for Partial differential
equation, then it takes Laurent type expansion

u(zy,22,...,2n) = ‘D(szz;---;zn)lz:?o:o u; (24,22, 20)", 4)

where @ and u are both analytic functions, A is an integer number, and the number of arbitrary

functions u; is equal to the order of the differential equation. Wiess, Tabor and Carnevale (WTC) [3]

introduced an approach that one can examine singularity structure of partial differential equations

directly. In addition, Wiess [4-7] investigated the Painlevé property for several partial differential
equations and he showed how to construct their Backlund transformations and Lax pairs.

The WTC approach is basically built on three steps. Firstly, the leading order analysis, obtaining the
dominant behavior of all possible singularities of the equation. Secondly, finding the resonances where
arbitrary constants may occur in the Laurent expansion. Thirdly, verifying the resonance conditions in
each Laurent expansion explicitly. The equation survives Painlevé test if all the three steps are
satisfied. A concise review of many methods of Painleve tests can be found in [8], and for recent
applications see [9-12].

The rest of the paper is organized as follows, in section two the Painleve analysis for the sixth order
solitary wave equations using Ohm’s law is considered, Section three is dedicated to apply the
Painleveé test for the nonlinear sixth order equation using Hirota’s bilinear operator. WWe move to
section four where the test is performed for solitary wave Sine-Gordon equation. The last section is
conclusions.

2 Painlevé analysis for the sixth order solitary wave equations using Ohm’s law
We consider the case when the coefficients of the equation (1) are taken to be ¢; = ¢c5 =1,¢, =

%, c3 = % and ¢, = 3. The equation then becomes
Uer — u_xx - uﬁzc - lfuxx + Zuu,% + uz_uxx - 3_ugcxxx - Usxxxxx = 0. . (5)
We search for solution of equation (5) expressed in an infinite series of Laurent type expansion
u(x, t) = ®A Y2 u; (x, ) Pi(x, b), (6)

in the neighborhood of a non-characteristic movable singular manifold ®(x, t) = 0, and the number of
arbitrary functions u; should be the same as the order of the equation. To determine the leading
dominant behavior, let u = k®* ,where x is a constant, into the equation (5) to obtain
—kABOA D, — P07 — DA ID,, — 18D 4DE + 30047303, — 100422,
— P22 — 9 A 2d2, + A1, + PATID, iy — 1200470 DS + A5DAODE —
1525024 DS + 85304 0P8 — 2251204 008 — 313DA 4 D% + 274104 0P8
—1822d* 4 D% + 33104 4D + 152047303, + 360D%D,, D45 — 12004 4D, D3
—2700A 4 P2P2, — 4510133, + k2D2P312 4 3601 3P2D,, + 30013 DD, .
+10A10A 22, + 1D 22 + 9ADA 22, — 15D 2D, Dy + KDAT1D,,
+15240A 5 i, — 150304 5did,, + 2013044 D3, + 451304422,
+5252045did,, — 1201204 43D, — 27012044 D2D2, — 75010 Sdid,,
+220104 4 D3D, . + 490A1DA D202, + 1812DA3D2D,, + 152D 3 D2D 00
—3K2AD34 22 — 54APA 3 D2D,, — 451D D2D 00 + 12001730, DL Dy
+1210472d, D, + 641D 2D, Do+ 15APA2D, Do + 26ADZA2 D2
+10A 27 + 602D 3D, D, Dy — 180ADA 3D, D, D,y ) = 0.
The lowest exponents of ® are {24—2,31—2,4— 6} and all the possible balances give the
singularity orders 1 = —2 and 1 = —4, so the most singular terms in the equation are
Zouzc + uzuxx — Unxeexxx ™0, (7
and
_uyzc — Ullyy — Uysexxxx™~0- (8)
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There exist two families (7) and (8) of Painélve expansions that needs to be discussed separately.
For first family (7), inserting u(x, t) = uy,®* into equation (7) yields
2udA2P2D2A2 — 1A — 1)P2DA2 — 4y d(A —1)(A —2)(1 —3)
(A= 4)(A = 5)Pedpr°0~0,
when 1 = —2 that leads to the two branches u, = +6vV10d2 and uy = —6V10d2.
In order to find the resonances, where the arbitrary constants may occur in the series, take a linear
perturbation of the leading order
u(x, )~uy® 2(1+ ("), 9)
where ¢ is a small parameter correction to the leading order. Substituting (9) into (7) yields
2{4+127" — 4r{d"}d Budd2 — 181P U DP2D 8 — 61D U D, P77 + 6LudPZP~E
—5r{d " udP2078 — 2u3 D, O + r2(P USDP2D 8 — rQud D" D, &7 — 1560u,y1]
D7D, Dy Dy P —540U T2 (DT D, Dy Py PO +60u T3 DT D, D D DO
—30uUgr{ D" D, Dy @ F + 1420uyr2 (D" P3D,,, PO + 390Uy {PTDZD 0, DO

—75UgT{ DT D 4y P D4 + 15Ugr3 DT DZD, 1 P75 + 15ugr2{ DT D, Dy D4
+15660uyT{P" DD, P77 4+ Ugr{ D" Dsrrx @3 — 1440uUg(1 + (D7) D, D P @ 7°
+15uyr3¢dT D3, P75 — 135uyr2{P" D3, P75 — 50U r{ P P2, d~* + 390u,r{d”

O3, D75 + 10uyr2{d " d2Z,, d~* — 8028uyr{®" D8 — 1665u,r3{P PP +
295uyrt{ P PED 8 — 27U TS (DT DED T8 + uyrelPTPED 8 + 5104uyri{PT PSP 8
+36uy(1 + (PP, Dy @™ — 108001, (1 + (D7) DR D, D7 + 2400uy(1 +
{OT) DD, 7% — 360Uy (1 + (D) DPED 4y, D7 + 90UG(1 + (D7) Dy Dy 74
+5400uy(1 + {PT)P2DZ, D76 — 360Uy (1 + (PT)DP3, P75 + 5040uy(1 + {PT) PSP 8

+5040uy(1 + {PT)DPED8 + +60uy(1 + (D) D2, D™ — 2uy(1 + (PP, Prrrnr P 3

—30uUgr{ DT D, Dy @ * — 75U DT D, P P4+ 15ugr3 DT DD, PO
+15uyT2{ DT DD, P* + 15660u r{P" DD, , D7 — 300urt{PTDiD,, D7
—15uyr5{ P DD, P77 + 1420uyr{PT P3D,,, P76 + 390U r{P  PID,, D>

+3195uyr2{PTP2P2, 6 — 820U r3{PT DD, ,, D¢ — 3080uyr{PT P3P, D O~0.
Now, collecting the terms that are linear in ¢, and by using Kruskal’s formula [13], ®(x,t) = x —
0(t), where ©(t) is an arbitrary function, and setting ®,, = 1 that gives
{(4(r —3) — (r? = 57 +18))(x — 0)"hug — {(r — 2)(r — 3)(r — H)(r — 5)(r — 6)
(r = 7)(x = ©)"}uo~0,
applying then u, = F6+/10 to obtain sixth degree resonances polynomial
r® —12r> 4+ 295r* — 1665r3 + 474412 — 3348r — 10080 = 0.
Solve the algebraic equation for r to gain the resonances
r= —1,6,7,8,%—1T,§+‘T, i=v-1.

We have six resonances corresponding to sixth order partial differential equation. There exist two
resonances (so-called Fuchs indices) of the first branch are non-integer numbers. The equation does
not pass the Painlevé test which indicates that the equation does not have a single valued around
movable singularity, but it may have a movable algebraic or logarithmic branch point. To truncate the
expansion at zero order, we substitute the expression

Ug Uy
= g + ; + Uy,
into the equation (5) and then grouping the terms with the same power of & to get a set of equations,
here we write down a few of these equations
—5040uy @S + 14uid2 = 0, (10)
—720u; ®¢ + 10800uy PiD,, + 4320DFu , + 30udu; P2 — 2uid,,
—12udug P, = 0, (11)

720051, , + 1800D2u d,, — 360U PE — 18001 1, P2 — 7200uy , P3P, — 2400uyP3D,,,
+20ugui ®2 — 5400u, PLDZ, + 20uuf P2 — 10ui Pz — 10uf D uy , — 20Uy Uy, Py —

Sulu% Dy +(u%u0,x)x =0, (12)

solving equation (10) for u, to obtain u, = +6+/10d2, plugging the value of wu, into equation
(11) and solving it for u; yields u; = ¥64/10®,,. Using the values of u, and u, in equation (12)
and solve it for u, to get
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— 20\/_q>xq>xx+3\/_q>x—15\/_q>§x+5q>x
Up =+ 1002
Hence, the truncated equation of the expansion (6) at zero order is
T 6V/10D% 6,/10Dy, — 20x/_d>xd>xx+3\/_¢2—15x/_d>xx+5¢x
u=+ — + >
o] o] 10P%
A finite number of terms here represent a local solution of the equation (5). Now, we move to deal
with the second family (8). Substituting u = u,®* into equation (8) to have
U2 D222 — u2(A% — D D2D2A2 — A1 — 1D (A —2)(2 = 3)
A =4)(A = 5)PeDr6~0.
The dominant balancing at the singular order 2 = —4 leads to the branch u, = —1680d%. For the
sake of finding the resonances, taking a linear perturbation of the leading order
u(x, )~uy® (1 + {®7), (13)
Substituting (13) into (8) to get
—[(16 = 8L (r — D" + (r — 4)2 2D DO 7LO] — [(((r — 8) DD,y + (r — 4)
(r — 5){2D2D2T + 2002 + (1% — 9r + 40) DT D2 + D, (—4D + (r — 4)2 D2 ))ul
O] — [(uo((§(r = HPT® — 4D Dy + 6({(r — D) (r = 5)OTH + 200N D, D)
+(15{(r — 4)(r — 5)(r — 6)@2d™3 + 150 (r — 4)(r — 5)D,,, P"** + 300D, P* — 1800
2D D,y + (10 {(r — 4)(r — 5)D"H* + 2000*) D2, + 20D, (3P, {(r —4)(r —5)
r—6)®™3 +{(r—4)(r —5)(r—6)(r— 7)P20"*2 — 3600,,d3 + 840d2d2)d, D,
+15¢(r —4)(r = 5)(r—6)(r — 7)®3, d"™3 + 45¢(r —4)(r = 5)(r — 6)(r — 7) D2 P2, P"+2
+15{(r — 4)(r = 5){(r — 6)(r — 7)P5 P, " — 18003, D3 + 3480002 P2, 2 — 100800
DED,, D + (60480 + {(r — 4)(r — 5){(r — 6)(r — 7)(r — 8)(r — 9P)DE))P~1°] ~ 0.
Using Kruskal’s formula [13], that is ®(x,t) = x — 0(t), and grouping the terms linear in ¢ , and
also setting @, = 1 which comes from Kruskal’s formula, to gain
[(Br—4)— (2 —9r+40))ud — (r— 4 -5 —6)(T —7)(T —8)(T — Nuyl{~0
with the benefit of u, = —1680d% , the resonances polynomial is
7% —39r° + 625r* — 526513 + 2289472 — 316567 — 60480 = 0.
Solving the algebraic equation for r to gain the Fuchs indices
=-1,89,12, > +5iV159 , - —2iV159,i= V-1 .
Two of the resonances are non-integer numbers thus the equation (5) fails the test and that due to
occurring of algebraic or logarithmic branch points.
3 Painleve analysis for the Sixth order equation using Hirota’s bilinear operator
To perform Painleve test for equation (2), the equation is given by
—Ugr + 2Usy — 15UZ — 30U Uysr — 15UULxxx + Q0UUZ + 45U Uyy — Uyyrx

] ] ) FUyxxexx = 0. (14)
One can deduce that the most singular terms in the equation (14) are
—15u2, — 30Uy Uyyy — 15U prx + 90UUZ + 45U Uyy + Ugrasr~0. (15)

Substituting u(x, t) = u,®* into the equation (15) yields
—1522(A — D2ud 020244 — 30221 — DA — 2)udd2d?A~% — 15041 — 1)(A — 2)(A — 3)u
GLP2A4 + 902U D232 + 451(1 — Dudd2d34 2 + 11— 1A —2)(A —3)
(A —4)(A = 5)uydLPr=°0~0.
From dominant balancing, we have two branches u, = 2#2 and u, = 4®2 at singular order
A = —2. In order to get the resonances, Take a linear perturbation of the leading order
u(x, t)~uy® (1 + (o), (16)
where ¢ is a small correction of the leading order. Substituting (16) into equation (15) to have
—15 [6ug(1 + (D) P2D*—5uyr{ " d2d~* — 2uy(1 + (PP, , P 3—uyr2(d”
DZD 4 +ugr{dTdD,, d3]? — 30(—2uy(1 + {PT)D, D73 + ugr{d b, d3)
(UT{ DT Dy D3 —24uy (1 + (P DP3D ™S + 18uy (1 + (D7) D, D, P 4+26u,
r{®" P35 — 9y pr2{ DT D3PS + ugr3{PT P3P — 21y (1 + (D7) Dy, P 3
—15ugr{ DT D, Dy, D + 3uyr2{ DT D, D, D) — 15w P 2(1 + (D7) (ugrd
DT D,y @ 320U { DT D, D, P F — 5402 (DT DP2D,, PO +6uU T3 (DT DD,
&5 — 15uyr{®T D3, D + 3uyri{dTdL, P4 — 154uyr{PTDED 0 — 120u (1 + (D7)
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DED™0 — 144uy(1 + (P D2D,, D5 + 18uy(1 + {PT) P2, d™* + 24uy(1 +
(DD, D @™ + 4UgT2{ DT D, D @* + 156ugr{ DT P2, D5 + 71ugr2{dT
76 — 14uur3{PTdED 0 + upr*{PTDEDTO — 2u (1 + (D) Doy @73) +
90 (ug®2(1+ {P")) ([¢%(r — 2)2d%" — 40(r — 2)D" + 4|udP2d~°) +
45 (g (P72 + 200" + 1) H (6uy(1 + (D) P2P~*—5uyr{d " d2dp—* —
2ug(1 + (D) D, D3 —ugr2{dTP2D™* + ugr{d"d,, &3 ) + 1560uyr{d" D,
Dy P @ —540Ugr2 (DT D, P D PO +H60U 3 DT DL D, Doy DT —
30Ugr{ DT D, Dy P4 + 1420ugr2( DT DE D, DO + 390Uy r{ DT DD, .\, D5
—75Ugr{ DT Dy Dy @ F + 15U T3P DP2D 0 D5 + 15UpT2 (DT D, Py P4
+15660uyr{ D" PED,, D7 + ugr{ D D111 P73 — 1440y (1 + (D7) D, Dy Dy P75
+15uyr3¢d"d3, &5 — 135uyr2{d"d3, &> — 50U r{PT D2, P~ + 390U r{dT D3,
&5 + 10uyr2{dTd2,, d~* — 8028uyr{d"PED 8 — 1665uyr3 (DT DED 8 + 295u,r
OTDE P8 — 27uyr DT DD T8 + uroC D" PED 8 + 5104uyri{ D PSP +
36U (1 + (D7) D, D yyrrr @ ™% — 108001 (1 + (D7) DED,, D7 + 2400uy(1 + (D7)
3D, P76 —360uy(1+ {P)DPED,, . D> + 90uUy(1 + {PT) Dy Prsre P4 +
54001 (1 + (D7) PZDZ, D76 — 360uy(1 + {PT)D3, D75 + 5040uy(1 + (D7) DD
+5040ug (1 + {P)PED ™8 + 60uy(1 + (D) D2, D% — 2uy(1 + (PP, Pyrrrarx P32
—30UgT{ P P @y @ F — 75UT{ DT D Dy P + 15U T3 DT D2D, 0, P75 +
15ugr?{PT P2d, 0, P4 + 15660uyr{ " PLD,, D7 — 300uyr* (P PED,, P~ —
15ur> (DT DED,, D77 + 1420uyr?{PTP3D,,, D¢ + 390ur{ DT D2 D, PO
+3195uyr2{ T P22, d6 — 820U r3(PTDID,,, P — 3080u,r{PTP3D,,, P76 ~0.
Using Kruskal’s formula [13], ®(x, t) = x — 0(t), and keeping only the coefficients linear in {,
with &, = 1, to obtain
—15[12(r — 2)(r — 3)ud] — 30[—2(r — 2)(r? — 7r + 24)u3] — 15[r* — 1473 + 71r? — 154r +
240)u] + 90[—4(r — 3)ud] +45[r? — 157 + 18)ud| + [(r — 2)(r = ) — ) (r = 5)(r —
6)(r — 7)ue] = 0,
applying u, = 2®2 to have the resonances polynomial
2r® — 5475 4+ 530r* — 225073 + 342872 + 1224r — 5040 = 0,
solving the last equation for r to gain Fuchs indices r = —1,2,3,6,7,10.
Also, for the other branch, applying u, = 4®2 gives
4r® — 108r° + 940r* — 234073 — 5264r2 + 182887 + 20160 = 0,
solving the last equation to gain Fuchs indices r = —2,—1,5,6,7,12. The resonance r = —1 , s0
called universal resonance, is corresponding to the arbitrary manifold ®. For more details about
negative resonances we refer the reader to [14,15]. We consider only the principle branch, when
uy = 202 , to verify the compatibility conditions. Substituting u(x, t) = Y2, u;®*~2 into equation
(15) and collecting the coefficients of d!. Here we write down a few of these equations

5040P%u, — 3780d5u? + 630d2ud = 0, (17)
72005u; — 4320P3uq , — 3600P ugu; — 10800D,, Piuy + 3960P3u Uy + 1350P2uu,
+36000,, PZug — 540D, uy  us — 0P, us = 0, (18)

—720D3u; , — 600D u? — 18000, Piu; — 1800PFuqu, — 120P5u + 18001 . Px
+2400D3ug Uy + 7200D,, P3ug , + 2400, Piuy + 1800D3u, ,uy + 900D 2uyus
+ 3900, PZugu; + 900PZuyuf + 54000%, d2uy — 780P2uj , — 10802 U v U
=900, ug Uy — 2220D, D, U LUy — 480D, D uf — 450D, uy ud — 225P  udu,
—330D2,uf + 90ud ,uy + 45ug uf =0, (19)
180D 5 Ug xUo + 840D U Uy 5 + 480D, PIuy + 720D3ugu, , + 1440D3ug LU,
+540D2uzuf — 2160, P2, ug , — 42002 uou; — 2160D,, PZ2ug o + 144D, P2uy
—180D,, ugu? — 180D, uuj — 540P2uUguy vy — 780D 2U Ug vy — 960D ZUg LU »
—360D 1y, Pouy — 1440D ,, PIug  — 360D, Uy U — 360D, Uy ,uf + 240D, U Uo
+300D, g Ug xx + 180D, UGUQ xxe T IO0UG xUU; + 180UGUY UG 5 — 10802 uyus
—360D5uyuy + 1080P20Z, uy + 14400, PIu, , + 780D, PZu? + 180d2u3
—360D3,uy + 96P3ug , — 480P3Uq yx + 180D, UG + 45Uy 4 Ud + I0UF Uy
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+30D 0 UG + 360D FUy vy — 24P2u; + 2160, PZugu, + 1080PZu U U,
—1560@,, D u U, — 1200D DUy, Uy — 1440D 1, Do Prug — 720D ugUy LUy
—600D,,, P usuy — 7209, uyup ,ug = 0, (20)
6u]~ azu]- a3u]- . . . .
where u;, = o W T 5z o Waxx = 55 J = 0,1,2,3. Solving equation (17) to obtain, by
using Kruskal’s simplification [13], ®(x,t) = x — (t), the following branches u, = 2®2  and
Uy = 4d2 . From equation (18) we have
—1080u, ®% — 21600Sd,, = 0 and u; = —2d,, and so u; = 0.

Also, from equation (19) one can get —240®% =0, and since ®, = 1 that leads to —240 = 0
which is inconsistent. Therefore, the compatibility condition is not satisfied and the equation (14) fails
the Painleve test.

4 Painleve analysis for sixth order Sine-Gordon equation

We discuss the case when the coefficients of the equation (3) are taken as ¢3 = cZ =c2 =cZ = 1.

The equation then is given by
Ot — Oxx — Oxxxx — Oxxxxxx = sin(h), (21)
adapting the transformation u = exp(if), i =+—1 , with the benefit of the relation sin(@) =

%ﬁxp(-l@) to get the equation

u” — 2uyu® + 2utut — 240ul — 12utu? + 720utu,, u — 240u,,, udu? — 2ulut
+ 60Uy uud + 24u,,ulu® — 540u, ulu? — Suy, u ut — 12Uy U u?
F 240Uy Uy Uy U+ 2Uaa U + 22U U + 2Ugpgan S — U — 30Ugyn Uy Ut
—6uz,u* — 20uZ, u* + 60udud = 0. (22)
To determine the dominant behavior, plug u = u,®* into the equation (22) to obtain
—ud[—ud®7* + 2ugA DA 1D, — 2ugADOA 2 D7 + 30U AP 2D, Dy
+12ugADPOA2D, Dy — 60UADOA 3D, D2 + D5 + 240ugADOA 4D, D3
—720ug Ao 5 D, DE + 540unADA 4 D22, + BugAd, Dyyy — 24UnADOA 3 D, D2
+240ug AP0 DE — 60U AP 3D, + 20ugADOA2D2, . + 6ulADPA2D2,
+12ug AP 4 DEDA2 — 240UnADA 3D, Do Dy — 2UpADPOA 1D, rx
—2ugADO 1D, + 2un AP 2D2 — 2u 1D 1D, ]~0,
From the last equation, one can get the branch u, = —1440®¢ at singular order 1 = —6.
To detect the resonances where arbitrary constants may occur in the equation, take a linear
perturbation of the leading order, that is
u(x, t)~uy® °(1 + Jo7), (23)
inserting (23) into equation (22) to have
[ue®~6(1 + (P77 — 240[ug®@, (=6 + {(r — 6)P)D~7]® — 12[uy P, (=6 + {(r —
6)P" D7 *[uy (1 + (PP ]2 + 720[ug P, (—6 + {(r — 6)P)D7]*[(42 + {(r — 6)(r —
PP + D (60 + (r — 6)IP™+ 1)1y @8] [u1o (1 + D7) D™6] — 240[ug (@™ (r — 6) —
6D)D,y + (3D, (P (r — 6)(r — 7) + 126D, + P2(—336+ (D" (r — 6)(r — 7)(r —
8)) PP [ug®, (—6 + {(r — 6)PT) D7 [ug (1 + (TP 6] —2[ug®y (=6 + {(r —
6)PT)D 7|2 [ug® 6 (1 + (PM]* + 60[(uo (C(r = ) D™ — 603) Dy + 4D, (D72 (r —
6)(r —7) + 420D, + 3DP2(DP"T2(r —6)(r — 7) + 6D, PP (r —6)(r —7)(r — 8) +
126@2,d2% — 2016P2P,, ® + ©%(3024 + (D" (r — 6)(r — 7)(r — 8)(—9)))) D 0] [ue D, (—6 +
{(r—6)PT)D 7 [ugd0(1 + (D7) ]3+24[(42 + {(r — 6)(r — 7)D2D" + D,y (—6D + (r —
6)P™ 1))y @8] [ug @ (=6 + {(r — 6) D)2 [ued (1 + {DT)]® — 540[(42 + {(r — 6)(r —
7T)DZDT + B (—6D + (r — 6)IPT 1)Uy D 8]? [ug P, (=6 + {(r — 6)PT)D 72 [u,d (1 +
(cbr)]z - 8[uo((f¢r+2 (r—6)— 6cD2)¢xxx + (3cDxecDT+1(T —6)(r—=7) + 126D, ® +
(=336 + (D" (r — 6)(r — 7)(r — 8))) P )P °[[ug Py (=6 + {(r — 6) PP ][ug®@ (1 +
ON* — 12[(((r{@"+* — 6D*(1 + (D7) Pryyan) + 5 (r — 13)D™H3 + 42D3(1 +
{DPT))D, Dy + (10r{D2(r% — 21r + 146)D™2 + 10rd,, {(r — 13)®7*3 + 42002 (1 +
(D7) (D ® — 8D2)) Dy + Py (15rD2,{ (1% — 211 + 146)DT+2 + 10r{ P2 D, (r — 15) (12 —
15r + 110)®" 1 — 504002(1 + (P D2, + 302400 P2(1 + (P")D,, + PE(—30240 + (D" (r —
6)(r = 7)(r = 8)(r — N(r — 10))ue) P~ ] [ug®Pr(—6 + {(r — 6)PT)D " J[ug®*(1 + {@M)]* +
240[(42 + {(r — 6)(r — 7)DPZD" + D, (—6P + (r — 6)IDP" 1)) uy @8] [ugP,(—6 +
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(= 6)PN)O 7 [ug® (1 + {ON)]? [ug(((P™2(r = 6) — 60Dy + (3D (O™ (1 — 6)(r —
7) + 126®D,, P + ®2(—336 + (D" (r — 6)(r — 7)(r — 8))) D, )P [ug®,(—6 + {(r —
6)¢T)Q)_7] + 2[(u0((((r - 6)([)“’3 - 6cb3)¢xxxx + 4‘q>x((q)r+2(r —6)(r—-7)+ 42¢2)¢xxx +
302, (0™ 2(r — 6)(r — 7) + 6@, PP (r — 6)(r — 7)(r — 8) + 126D, P2 —
2016D20,,® + ®E(3024 + (" (r — 6)(r — 7)(r — 8)(—=9)))) P 10 [uy® (1 + {dM)]° +
2[(42 + {(r — 6)(r — 7)PZD" + Dy (—6D + (r — 6)7P" 1) Jug @ 8|[ue®@~0(1 + {P7)]° +
2[(“0((r<q)r+5 - 6(1 + Zq)r)q)s))q)xxxxxx + 6q)x(7{(r - 13)CDT+4 + 42(1 + {q)r)q)4))q)xxxxx +
(157{D2(r? — 21r + 146)D"*3 + 157D, .{(r — 13)P"™* + 630(1 + {P") (P, P —
8D2)) D,y + (10r(1 + (D)D) D2, + 20D, (37D, ((r? — 21r + 146)P"+3 r{®2(r —
15)(r? — 151 + 110)P"+2 — 1008D2(1 + {P7) (P, @ — 83)) D,y + 157P3, {(r?=21r+
146)D™3 + 45rd2, d2{(r — 15)(r? — 15r + 110)d™*2 + 157, d%¢  (r* — 40r3 + 63512 —
50007 + 19524)®" 1 — 5040(1 + {P")D3) D3, + 1360802 P2
(14 (PN P2, — 4536000D%(1 + {P")D,, + (332640 + {(r — 6)(r — 7)(r — 8)(r — N(r —
10)(r — 1)) D™1?] = 2[(({PT2(r — 6) — 6D?) Dy + O (3D {(r — 6)(r — 7)™ +
126D, + ®2(—336 + {(r — 6)(r — 7)(r — 8)P"))ur® ] [ue® (1 + {d)]° —
30[(u0((€(r - 6)q)r+3 - 6q)3)cbxxxx + 4CDx((CDr+2(r —6)(r—=7)+ 42q)2)q)xxx +
302,00 2(r — 6)(r — 7) + 6@, PP (r — 6)(r — 7)(r — 8) + 126D, P2 —
2016D20,,® + ®%(3024 + (D" (r — 6)(r — 7)(r — 8)(r — 9)))) P 19 [uy® (1 + {d")]*
[(42 + (r— 6)(r — 7)P2D" + D, (—6D + (r — 6)IP" 1))u @8] — 6[(42 + {(r— 6)(r —
TNDZO™ + Dy (=6 + (r — 6)TP™ 1))y 812 [ug @7 (1 + {PM)]* — 20[uo (((OT+2(r — 6) —
6D Dy + B3P, (P — 6)(r — 7) + 126D, @ + D2(=336 + (D" (r — 6)(r — 7)(r —
8))) @)1 [up® (1 + {OM)]* + 2[((42 + {7 (r — 6)(r — 7)DF + Py (6D + (r —
6){ DT DU @8 [ug® 6 (1 + {P)]* + 60[(42 + {(r — 6)(r — 7)P2D" + &, (—6P + (r —
6)P™ 1)) U @ 78P [up @ °(1 + {7)]* ~ 0.

Taking into account Kruskal’s formula [13], ®(x,t) = x — ©(t), where ©(t) is an arbitrary function,
and uy = —14400¢, and @, = 1 to have sixth degree resonances polynomial

r® — 157> + 85r* — 22573 + 274r%2 — 120r — 720 = 0.

Solving the last equation for r to get

r= —1,6,2—%\/—7 - 8i\/14,§+%\/—7 — 8iV1 ,g—gx/—7 + 8i\/14,§+% —7 + 8ivV14

Obviously, the branch possesses non-integer resonances and the equation does not pass the Painlevé
test.

Conclusion

After all what we have discussed in the current work, it seems to be that all examined equations do
not survive the Painlevé test, and therefore they are not integrable, in the Painlevé sense, for some
special values of the coefficients. The Painlevé analysis, in fact, gives us an idea about the nature of
solutions of the equations. The bad positions of resonances provide an evidence on occurring of
algebraic or logarithmic branch points in their solutions, and the inconsistent of the compatibility
conditions making the equations do not pass the test. The test for other special values of the
coefficients or even the more general cases of the equations that needs to be considered in the future
work.
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