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Abstract

The Dwarf Mongoose Optimization Algorithm (DMO) is inspired by the behaviour
of Dwarf Mongoose which can strike the ideal balance throughout research between
exploration and exploitation. In this article, we combine algorithms of the Dwarf
Mongoose Optimization Algorithm and the Nelder-Mead Algorithm (DMONM). In
addition, the statistically evaluated functions is utilized by calculating the average and
the standard deviation values that are used to validate the suggested algorithm's
performance. The experimental results are on high-efficiency optimization functions
with various dimensions. The hybrid algorithm produces good, encouraging, and
better outcomes than the original algorithms. The results show that the proposed
algorithm could enhance the effects of DMO when it used to solve the optimization
issues of the multi-objective reliability system

Keywords: dwarf mongoose optimization algorithm, Nelder-Mead Algorithm.
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1. Introduction

Recently, many authors have used many meta-heuristic algorithms in various applications
to handle different optimization problems [1] [2] [3]. The straightforward research technique
offered by Nelder and Mead (1965) [4]. It is a derivative-free technique to find local search.
This technique involves to applying four fundamental operators to remeasure the single
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information on the local behaviour [5], and it broadly uses the Nelder-Mead algorithm (NM)
for optimizing meta-heuristics. Condensation is a technique for speeding up the search and
overcoming the algorithm's slow convergence, which is similar to a hybrid Nelder-Mead
method and cuckoo search algorithm ( HCSNM ). The experimental findings demonstrate the
effectiveness of the (HCSNM) algorithm and its superior capacity to resolve integer
programming and mini(max) problems that are more quickly than other algorithms [6] to utilize
two methods to enhance the bat algorithm (BA) performance for solving electrical engineering
optimization issues. The first is based on applying the crossover technique to a conventional
BA that is similar to the genetic algorithm method. The Nelder-Mead (NM) simplex method
and the BA are combined in a second approach to produce the NM-BA algorithm. Improvement
is therefore based on fusing traditional BA with NM. This combination seeks to speed up the
optimization process using standard BA, and it improves the NM algorithm's exploitation stages
to avoid trapping in a local extremum [7]. The Nelder-Mead algorithm is employed to solve an
optimization problem for a structural design. The hybrid marine predators and Nelder-Mead
algorithm (HMPANM) are used to enhance the local exploitation capabilities of the marine
predator's algorithm (MPA). The outcomes unequivocally demonstrate the HMPANM's
capacity for the best component design in the automotive sector, where the hybrid marine
predator optimization algorithm is applied for structural optimization of the vehicle component.
The outcomes demonstrate that the hybrid marine predator's optimization algorithm produces
superior effects versus other techniques [8]. A hybrid algorithm for power system optimization
is a reactive power dispatch (ORPD) problem that combines the Firefly Algorithm (FA) and
Nelder Mead (NM) simplex approach. A hybrid algorithm is used to find the generator voltage
method's ideal settings instead of the original FA and other existing techniques. This algorithm
has improved convergence characteristics and resilience. It is demonstrated that the hybrid
approach can deliver more effective solutions [9]. The multi-objective system reliability
optimization is a significant in the industry which becomes more than ever [10] [11]. The
purpose of this paper is to develop the Dwarf Mongoose Optimization Algorithm (DMO) [12]
with the Nelder-Mead algorithm [4] [5] that proposed hybrid Dwarf Mongoose Optimization
Nelder Mead algorithm (DMONM). The effectiveness of (DMONM) is verified by the
experimental results of statistical analysis for optimization problems. Reveals (DMONM) is
superior to DMO, Multi-objective system reliability optimization, due to its importance in the
industry. Optimization has multiple objectives, such as maximizing reliability and minimizing
cost. Optimization is presented for multi-objective system reliability optimization and ensuring
diversity in exploring the search space [11] [13]. In this research, we emphasize on improving
the numerical results obtained for the DMONM algorithm compared to the original algorithm.
This paper is organized as follows. In section 2, we provide basic facts for the Dwarf Mongoose
optimization algorithm and the Nelder-Mead method. In Section 3, we present the proposed
algorithm. In Section 3, we mention the types of test functions. In Section 4, we show the
statistical methods results for test functions. In Section 4, we apply the algorithms to improve
network reliability.

1.1 Preliminaries
1.1.1. The Dwarf Mongoose Optimization Algorithm

The initial design of the Dwarf Mongoose Optimization Algorithm (DMO) can be found in
[12] . The proposed DMO imitates DMO compensating behaviour. We apply the next formula
and we start to determine a starting value for the set of solutions:

xij =l +rand X (ui—1). 1)
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Where the rand is a random number in [0, 1] . The search domain's boundaries are u;and
l; .The DMO is made up of three groups: the Alpha Group, Scouts, and Babysitters. To catch

the food, each group employs a distinctive method. These specific groups are modelled in the
next manner as follows:

1.1.1.1. Alpha Group
After the population is established, each solution's fitness is calculated. According to Eq.
(2), each population's fitness probability value is established, and this likelihood is used to
determine the alpha female ().
fiti

wifiti

(2

a =

Then — b, isas many as the alpha group of mongooses has members. where b, represents
the number of nannies. Peep is the dominant female vocalisation that keeps the family on track.
The first sleeping mound, which is located at, is every mongoose sleeps in the initial sleeping
mound, which is set at @. The DMO selects a candidate for a food role using Eq (3).

Xi+1 = Xi + ph; * peep. .. (3)

The value ph;has a uniform distribution and falls between [-1,1]. Eq. (4) provides the
sleeping mound that follows each repeat.
fitiv1 + fiti

sm; = . .. (4
* = max{lfitir 61} ®

Eq. (5) provides the average number of the discovered sleeping mounds.
p = iz (5)

n

1.1.1.2. Scout Group

The algorithm is advanced to the scouting phase if the prerequisite for a babysitting
exchange is satisfied as well as once the condition for a childcare swap is met, it analyses the
next food source or sleeping mound. Mongooses are known to avoid old sleeping mounds, thus
scouts search for the next one to ensure exploration. The manner of moving depends on whether
he successfully locates a new sleeping mound in our model, which combines foraging and
reconnaissance. If they are wander far enough, the family will find a new sleeping mound.
Equation and also serve as representations of the scout mongoose (6).

_ (Xi—cf *phi xrand [x; — 1. if @iv1 > @i

Xiv1 = - . .. (6)
Xi +cf *ph; *rand [y; — i']. otherewise

where rand € [0.1], Eq. (7) is used to compute cf value while Eq. (8 ) is used to calculate i’

value.

f= (- @i ™
= — — maxiter
¢ N max iter
- % SM.:
,TZZXL — L . (8)
i=1 t

Babysitters are often lesser group members who look after the children and they are
frequently rotated, so the alpha female can oversee the daily hunting excursions of the group.
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| Algorithm: Pseudo-code of the DMO |
Step 1 : Input: Set the requirements and solutions of the algorithm.
Step 2 : Initialize the algorithmic parameters settings and solution.
Step 3 : For iter=1: max_iter

Step 4 : Determine the Mongoose Fitness Function..
Step 5 : Establish a timer ().
Step 6 : Using Eq.(2) to determine the alpha value.
Step 7 . Using Eq(3 to locate a potential food  position.
Step 8 : Estimate the new fitness Xi+1-
Step 9 : Calculate the average value for the sleeping mound as it is determined by Eq. (4).
Step 10 : Eg.(5)can be wused to calculate the average mound sleeping.
Step 11 : Eg. (8) can be utilized to determine the movement vector.

Step 12 : Based on the Equation, simulate the next location of the scout mongoose (6).
Step 13 : end for.

Step14:7 =7+ 1.

Step 15 : end while.
Step16 : Output: Return the best solution (y).

1.1.2. Nelder-Mead method

The Nelder-Mead simplex method is frequently employed to identify local minimum
solutions if the derivative is unknown for well-defined problems. The fundamental building
block algorithm is the possibility of transformation reflection, expansion, contraction, and
shrinkage. These are the steps that make up the NM simplex algorithm [4] [5] .
Stepl: Compute trial steps. In all iterations. First, all the vertices Order n + 1 depending on the
objective function value to satisfy

fx) < flx) << flxnyr)
Step2: Reflection Calculate the reflection point x,. from
Xr = Xe +MXe — Xni1) ..(9)

Where

xe ==I"h X ...(10)
i#worst
the centroid of every point with exception of x,,;,if f(x;) < f(x,) < f(x,), accept the

reflected point x,- and end the iteration
Step3: Expansion If f(x,) < f(xy), then itis calculated that the expanded point x, is
xe

= xC

+ B(x, —x.) - (11)
and If f(x.,) < f(x,), then acceptx,and end the iteration otherwise f(x,) < f(x.),
accept x,- and end the iteration
Step 4: Contract. If (x,) = f(x,) . A contraction takes place. Two contractions are
conceivable.
a. Outside. f(x,) < f(x) < f(xns1), contraction by the formulae (12)
Xeon = Xc +o0(x, — x;) .0<50 <1, ..(12)
and If f(x.0n) < f(x,), acceptx.,, andend the iteration, otherwise go to calculate a shrink
step.
b. Inside. If f(x,) = f(xn+1) calculate inside contraction
Xeont = Xe —0(Xe —Xpyq) 050 <1, ...(13)
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and If f (xcont ) < f(xn41), then accept x..,,. and end the iteration , otherwise go to calculate
a shrink step.
Step5: A shrink step calculates the shrink by the formulae
vi = x1 + 6(x; — x7).0<8<1 , il =2....n+1 ...(14)
2. The proposed DMONM algorithm

The proposed Dwarf Mongoose Optimization Nelder Mead algorithm (DMONM) follows
the same steps as the traditional Dwarf Mongoose Optimization Algorithm (DMO). Then it is
used to improve the best result from the previous step of the DMO algorithm, the obtained
solution from the Dwarf Mongoose Optimization Algorithm is applied to the Nelder-Mead
algorithm for the same iteration.
3. Benchmark Functions

To evaluate the effectiveness of the suggested Dwarf Mongoose Optimization-Mead
algorithm (DMONM) using different test functions. Thirteen benchmark functions have been
employed for unimodal and multimodal. The purpose of the unimodal test functions {f; — f-}
in Table (1) tests the exploitation capacity of the algorithm because they have one optimum
limit. Multimodal functions {fs — f;3} are shown in Table (2). There are many locally optimal
solutions for multimodal functions. So the optimization algorithms need to have a lot of
exploring power 30 and 50 dimensions that are used to test these two classes of functions. The
analysis has been performed on MATLAB 2019, and it describes the parameters settings that
are employed in the experimentationA = 2.8 = 3.y = 0.01.6 = 0.5. The iterations number is
500 iterations.

Table 1: Unimodal test functions.

Objective function Dimensions Range
m
— 2
Lo = ZXi 30,50 [-10,10]
i=1
m m
00 = Z|Xi| + nlxl-l 30,50 [-10,10]
i=1 i=1
m i z
£ = Z Z 1 30,50 [-100,100]
i=1 \ j=1
faQ) = max { [x;|,I < i <m} 30,50 [-12,12]
m—1
£ ) 110004, = 2 + Gt = 1] 2050 3030]
i=1
m
feQ) = Z(Ixi +0.5])? 30,50 [-100,100]

= i=1

00 = Z ix{ + random(0.1) 30,50 [-1,1]
i=1
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Table 2: Multimodal test functions

Obijective function Dimensions Range
feQ) = Z —xisin (V1D 30,50 [~100.100]
. i=1
foQ) = Z[Xf —10 cos(2my;) + 10] 30,50 [-5.2]
i=1
1,
fiolx) = —20exp| —0.2 |— ZXi
m & 30,50 [—10.10]
1 m
— exp (—Z cos(2my;) + 20+ e
m " i=1m
£ = g5 > o~ | [eosD +1
1 400047 1 17 30,50 [—17.17]
i= i=
m-—1
[
fra(0) = —{10sinGey) + ) (3 = 1?1+ 105in (my3.)
i=1
+(3, — 1)2 +Zu ..10.100.4
On =17 £ « ) 30,50 [-13.13]
k(xi —a)™ x; > —a
u(y;.a.i.n) =40 . —a<y;<a
k(=xi—a)".xi <-a
m
fis(0) = 0L sin?Grn) + Y (= D2 [1]
=1
+sin®Bmy; + 1) + (x, — 1)? 30,50 [-50.50]
m
[1+ sin®*Qrym)] + z u( x;-5.100.4)
i=1

4. Result and discussion

The performance of the Dwarf Mongoose Optimization Nelder Mead algorithm
(DMONM) in several benchmark function classes using statistical methods is measured. The
average (avg) and standard deviation (std) and performance comparison with algorithm Dwarf
Mongoose Optimization Algorithm (DMO) from the experimental results are presented in
Table (3), we find that the Dwarf Mongoose Optimization Nelder Mead algorithm (DMONM)
is able with its best performance for the test functions in 30 dimensions. Table (4) demonstrates
that the DMONM algorithm's results are superior to those obtained when DMO is evaluated in
50 dimensions. With the exception of the function (fs) of performance, the DMO algorithm is
superior to that of the suggested approach in both dimensions.
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dim=50
function DMO DMONM
avg Std avg Std
T 118.33848 21.37447 0.15308 0.15879
fo 83.98244 13.33750 0.96055 0.73752
fs 118908.55 12750.62 1445.3617 912.477
fa 10.79053 0.37106 1.59495 0.28245
fs 101255595.4 29520605.99 6471.109 5991.942
fe 11716.42 2069.31149 15.19601 16.64612
fz 10.77554 2.88337 0.02407 0.00724
fe -1461.1541 91.01792 -1487.955 109.278
fo 529.69589 23.57921 125.0746 73.37372
fio 7.15218 0.36453 0.34426 0.34302
fia 1.08658 0.01409 0.02129 0.02141
fiz 1063.95 1166.061 0.01954 0.05176
fi3 210469911.7 66974355.38115 18.33956 21.37227

5. Application algorithms in allocation reliability

In order to create a highly reliable system by allocating greater component reliability and
lower cost, it is crucial to raise the dependability of a multi-objective system. In this research,
we obtain a system from the shutdown simplified modular Petri net system that is described in

[14]. Conversion Petri nets in Figure (1)

Conversion Petri Nets as the network is turned into a graph in this instance places are
replaced with nodes, and the transitions and their connecting arcs are replaced with a single
edge [15]. We get the network that is shown in Figure (2)

-

Figure 1: Simplifies modular Petri net [14]

3856




Fadhil and Hassan Iragi Journal of Science, 2024, Vol. 65, No. 7, pp: 3850-3859

Figure 2: The network system.

We use the Sum-of-Disjoint Product [16] to calculate the reliability structure system in
Eq.(15)
R = 11yr3 + 1131y Tg + 1iTalgT g + 11Ty 5T — T1Tel 3Tyl + 111314157y
—T1T13TgT0 + 11Ty T6TgTio + 111218 o1 — 111213141517 — 11121311571
TT3T4TsTeT7 — 1113145 eT11 — T112TaTeVgT10 — 1113141517111 — 11131,
TeTgl1g — 11121378l 1 + T TuT5T7 18T 0 + 1114 TeTgToT11 — 11727819 10711
F TRy Ty + T3y 5T + 11Tl 3 45Ty 1 + T34 eTsT 0 —
T 1Ty sT7TgT g + T T3Ty 5T 7111 — 111314517 TgT g — 11114 57Tl 1 — Ty
TaTyTsTgT10T11 — 11121y eTgloT11 — T1T4TsTeT7 1T 0 — 111374 6TgToT11 + 11
TaT3TgloT10T11 + T1TaTsTe g9l 11 — 1114517781 10T11 — T1T4T5T6 8110711 — 11
TaTeTgTol 0111 — T1 121314l 56 711 + 111131y 517 TgT o + 11121314 5189l 1
+1 Ty 5Tl g1 + 11T 3TusTg o111 + T3 a6l glol11 + 113145761y
TgTyg + 111214 sTeTgloT 1 + 11Ty 5Tl 10711 + 111374 5 6 g ol 10711 + 1112
T sT7TgT 10111 + 11131y 5 68T 1oT11 + 117374 57718 10711 + T1T2T4 6 879110111
1Ty Y6718 9T 10T 11 + 117314 6TToT 10711 + 11745 6T 718110711 + 117475761
ToT10T11 — T2V 34l sTeT7Tg 10 — 11727374 5T o1 — 1112137457681 10711 —
a3 sT7gT10T11 — T1T213 4 518 o191 11 — 11121314 68 9T 10711 — 1112147576
7710111 — 111314 5161718110111 — 111214 5 6 8 9T 10711 — 1113745 6 879110711
1T 3Ty 5T 7TgT10T11 +
T 314 56T g 9T 10711 ...(15)

5.1. Mathematical model for multi-objective system reliability optimization
The following can be used to express the multi-objective problem [11] [13]
max Ry (1;) fori =1.2....11

. b
min Cs(;)=X.{2, a;exp )
subject to 0.95 < Ry, £0.9999
06<r <09999fori=1.2....11

Where a = 0.01.» = 0.03for i = 1.2.....11
R is represented by Eq.(15)

5.2. Numerical case study
Multiple techniques can be used to solve problems involving multi-objective optimization.
The weighted-sum approach reduces a multi-objective problem to a single-objective problem
by giving weights to each function. The constraint handling is done via a penalty function [17]
[14] [18].
min f(ri) = U Cs _.uZRs +a (ri)
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Where  p; = u, = 0.5 and a (r;) is the penalty function
a (r;) = a; max(0.9999 — R;) + a,max (0. R; — 0.95)

Where a;.a, is the penalty factor, we find out the best reliability of the system by using
DMONM and DMO algorithms. The number of iterations is 500 which is used to describe the
parameters settings that are employed A = 2.8 = 3.y = 0.01.6 = 0.005, The results values
of components reliability are r; and the cost components are C;with the best value of reliability
system is R and the total cost is C, in Table (5).

Table 5: Comparison of DMONM and DMO algorithms for results values components

DMO DMONM
Components
Value of r; Value of r;
7 0.9915 0.9917
7 0.9799 0.9805
T3 0.9696 0.9724
T 0.9795 0.9804
Ts 0.9586 0.9583
Tg 0.9397 0.9379
T, 0.7696 0.7516
Ty 0.9595 0.9570
Ty 0.8246 0.8336
T10 0.9484 0.9496
Ty 0.9607 0.9590
Total R, 0.9908 0.9911
Total C, 0.5773 0.6093

Through Table(5), we can make the following observations: At values using a DMO
algorithm are 0.7696 < r; < 0.9915, foralli=1,2,...,11 and the values using the HBANM
algorithm are 0.7516< r; < 0.9917, for all i = 1,2,...,11, we notice an improvement in the
total value Rg (0.9911) in DMONM algorithm compared to the total value Rg;of the DMO
algorithm (0.9908) and the suggested algorithm have been improved six components are
(r1.12.73.174.79.71¢9) COmpared to the value of the DMO algorithm.

6. Conclusions

The Dwarf Mongoose Optimization Algorithm (DMO) and Nelder-Mead algorithm
(DMONM) and Nelder-Mead algorithm are combined in this study to form a hybrid Dwarf
Mongoose Optimization Nelder Mead algorithm (DMONM), the suggested algorithm improves
the best result from the DMO to confirm the robustness and efficiency of the average and
standard deviation that are used to examine its effectiveness. We also discover that the
DMONM significantly improves the majority of the functions. The DMONM algorithm was
used to improve a multi-objective reliability system. In addition, the results show that they are
better than the DMO algorithm.
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