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Abstract

The conjugated gradient methods can solve smooth functions with large-scale
variables in the specified number of iterations for that they are highly important
methods compared to concerning other iterative methods. In this paper, we propose
two new conjugate gradient methods, namely the PMDL-1 and PMDL-2. However,
for non-smooth functions, which are called conjugate gradient-free derivative methods
depending on the projection technique. The two methods give great results compared
to the basic PDL method. Moreover, we provide theorems that prove the global
convergence between these two methods.

Keywords: Conjugate gradient; Smooth functions; Projection technique; Free
derivative methods.
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1. Introduction

Let F be a non-linear mapping, continuous and monotone function which is defined by
F:Q c R" - R", where Q is a nonempty closed and convex set and R™ is the n-dimensional
Euclidean space. We say that F is a monotone function if for any x,y € (, we have
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T
(F) =F®») (x=y) = 0. (1)
In this paper, we will find the solution to the following non-linear equation:
F(x)=0,x€ Q. 2

The methods for solving monotonous, non-linear, and unconstrained problems in case Q =
R™ are divided into Newton's method and semi-Newton methods. Their variables are very
popular as a result of the convergence of local lines in them to the second and local degrees [1]-
[6]. Whereas, the monotonic, non-linear equations are widespread, these methods are not good
because they require solving a linear system of equations which means, the Jacobian matrix of
F(x) or rounding them in each iteration is used [7], [8]. Therefore, researchers examined to use
the methods of the conjugate gradient for solving (2). We use the conjugate gradient algorithms
to solve non-linear problems with large dimensions. These methods are well suited to these
problems because of their demand for low memory, in addition to strong global convergence
as an important feature of these algorithms. The iterative method for solving (2) usually has the
general form:
X1 = Xg T Sk 3)
Where s, = a;dy, a; is the step length obtained by a suitable line search and dy, is the search
direction. Examples of the first conjugated gradient algorithms can be found in [9]-[12]. These
formulas were later developed by several researchers. Dai and Liao [13] gave the following
formula
DL _ QIZ(Yk—l—T Sk-1)
A @
It is flexible due to the use of positive and different values of 7 and to change the direction
of the search to obtain sufficient descent and global convergence properties [14]-[16]. Solodov
and Svaiter [17] combined the Newton method and projection strategy, they proposed Newton's
non-convergent, comprehensive method of a system of monotone equations without assuming
contrast. Wang et. al. [18] extended Solodov and Svaiter's work to solve the constrained convex
monotonic equations. Later, Ma and Wang [19] proposed a modified projection method to solve
a system of monotonic equations with convex constraints. Although the projection methods for
the restricted convex routine equations are proposed in [18] and [19] that have a very good
numerical performance, however, they are not suitable for solving extensive monotonic
equations because they require matrix storage. Recently, Liu and Li proposed a gradient
multivariate synchronous spectrum projection algorithm for constraints in nonlinear monotony
equations by combining a multivariate spectral gradient method with the Dai and Yuan (DY)
conjugated gradient method. In addition, several methods have been proposed to solve the
system of nonlinear monotone equations; for more details, see [20]-[26].

This paper is divided into the following sections: Section 2 gives the two suggested
methods and their algorithms. Section 3: Some assumptions and conditions are applied to obtain
global convergence. Finally, in Section 4, we present the numerical results of these algorithms.

2. Two new Parameters

In this section, we introduce two new updates to the modified Dai-Liao method (4) based on
several changes that are shown in the following steps:
a) Modify and damped the parameter values t and y. Consider this model for the following
quadratic function:

2
Qk(T)::fk—l4'Tg£—1dk—14‘%;d£—1vsz—1dk—r
Since € is a very positive and small quantity, then the second derivative of the square function
becomes:
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2 o Y1 _ 9(xg—1tedp—1)—g(xg—1)
v fk—ldk—l ~ s < '
We replace

V-1 = V() = Vf (xk-1) = g(xr—q + di_1) — gxpe—1).
With damped techniques [23-25] for y; that s
V-1 = Wg—1Yk—1 + (1 = wg_1) Br_1Sk_1,
S0, We get:

D
_ 1 _
szk—ldk—l = ykg L= z (Wg—1Yk-1 + (1 — wg_1)Bg_1Sk—1) = }’1?—1-

Ifa =si_1Yk-1 , b = S4_1Bx_15¢—1 and

1 ifa>02b
@1 = {ﬂ if a<02b
b-a

The model becomes
2
0 (T) = fio1 + TGk-1dr-1 + %d£—13_’1?—1’
which implies

9k (D) = gh_1dp—1 + Tdj_1 Vi1,
0=gi_ 1dx-1 +Tdj_1 Vi1

Hence,
o = g = gl
dk—1ka—1 Sk-1Yk-1
and s, yP = 08—2 b implies P, = %
If By_, =1, then '
elgk_ dy_
=gl ®)

This t5_, is very suitable for parameter Dai-Liao Eq. (4).
Using the projection strategy for monotonic equations, the process needs to be accelerated using
the monotonicity condition of F. By monotonicity of F and letting z;, = x; + a,dy, the
hyperplane

Hy = {x € R*F(2)7(x — z;) = 0}. (6)

Separates strictly x; from the solution set of Eq. (2). Through [17] where the next iteration
Xy+1 IS to be the projection of x; onto the hyperplane Hy,. So, x; ., can be evaluated as:

F T(x— F
Xg41 = PQ[xk — (RF(Z]()] = xy — (zp)" (x—2zR)F(z) . (7)

. IF(zi)I?
_ F(zp)" (xg—2zx)
Where G = =i
Now, using the projection and damping technology, we can propose the new development of
Dai-Liao as in the formula:

T D D
ﬁPMDL—l _ Fie U1 —Tk—15k-1) ®)
k - 4T b ’
( (1-wip)B ) e
—p _ Wg—1Yg—1t(1-wg_1)Bg_15k—1
and yk—l - {k ’

4% —FT_ dj—
rfy = Ll fpadens ©)

0.2 5} _1Sk-1

We have to note that it is possible to add an update to the denominator of the fraction in the
first new formula Eq. (8) and get good results as well, which we will present in the numerical
results section of these two methods.

PMDL-2 Fig (V1 =Tio—1Sk—1)
= 1
k S IFk-1117+(1-8) lld-1lI? (10)
So, the new search direction will be:
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i = {—F(xk) + pPMPL=lq, ifk>1 (11)

Where i=1,2. Now we can suggest the steps of the two new algorithms:

2.1 Algorithm (PMDL-1)

Step 1: Given x, € Q, ¢, o € (0,1), stop test e > 0, set k = 0.

Step 2: Evaluate F(x,) and test if [|F(x,)|| < € stop, else go to Step 3.

Step 3: Compute t/_, and BEMPL=1 from Eq. (9), (8) respectively.

Step 4: Compute d;, by Eq. (11) and stop if d,, = 0.

Step 5: Set z, = x; + aidy, Where a; = @™k with m;, being the smallest positive integer m
such that

m T m 2
o o™ lldel
F (xk + Talk) dj > —o LT (12)

Step 6: If z, € Qand ||F(z)|| < € stop, else compute the next point x,,, from Eq. (7).
Step 7: Let k = k + 1 and go to Step 1.

2.2 Algorithm (PMDL-2)
Step 1: Given x5 € Q, ¢, §, 0 € (0,1), stopteste > 0, set k = 0.
Step 2: Evaluate F(x;) and test if [|F(x,)|| < € stop, else go to Step 3.
Step 3: Compute t/_, and BEMPL=2 from Eq. (9) and (10), respectively.
Step 4: Compute dj, by (11) and stop if d;, = 0.
Step 5: Set z, = x;, + aid, wWhere a;, = @™k with m;, being the smallest positive integer m
from Eq. (12).
Step 6: If z, € Qand ||F(z,)|| < € stop, else compute the next point x;,, from Eq. (7).
Step 7: Let k = k + 1 and go to Step 1.

3. Convergence Analysis
In this section, we establish the global convergence of the two new methods by using the
following assumptions:

3.1 Assumptions
Suppose F fulfills the following assumptions:
(i) The solution group of the equation for Eq. (2) is non-empty.
(i) The function F is Lipschitz continuous, i.e., there exists a positive constant L such that:

IFGo) — FO)Il < Lllx—yll,Vx,y €R® (13)
(iii) F is uniformly monotone, that is,
(F(x) = F(y),x—y)=cllx—yll>Vx,y ER",c>0. (14)

3.2 Lemma
Using Assumptions 4.1 and d,, is known by Eq. (10), then the sufficient descent condition is
held i.e.

diFie < = pic IIFI? (15)
Proof:
Ifk =0 then dy Fy = —Fy Fy = —||F|I?. Fork >0,
FI5P ) i P (Flsp_1dp_q) F
ALy = —||Fl|? + Eicadicn) i T (lesiordicn) Fic
Tde—lyk—l r b dk;lyk—l ;
Fi Vi—1)dr-1 F (F; sp—1)(dyg—1"F
dTF, = —||F|? +(k 1;;)(_15 1 Fk)  Ti-a( dek 1_)1() k-1 k)’
k-1Yk-1 k-1Yk-1
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F F
dTFk—_”Fk”2 (kyk 1) (dk L F) Tk 1(k5k 1)(dk 1 Fk)
Since,
_ 1
Fiyi-,= a(wqukTYk—l + (1 — wg—1)F{ sk-1),

T
1 Wg—1F; Yi—1 (1-wyg 1)Fk5k 1 T
drF, =—||F ||2+ —rd F +——_d 1 F
k'k k T d;; 13’1121 k-1 Tk T dzf 1y,’31 k-1 Tk
D T
_ Tpe—1(Fe Sk-1) (di Fk)
T = -1
dk—1yk 1
Wk—1 Ff V-1 1 (1-wk—1)Fy Sk—1 T
dr'F, = —||F.||? + —d TR, + ——kilklerg TR
k'k ”k” x d y k-1 k O d£1yl?1 k-1 'k
Tk 1Fk5k_1d F
T D k-1 Tk
Ar_1Vi—1 . 1 -
wi—1(F Yk-1) T (1-wk—1)(Fy Sk—-1) T
drF, = —||F||? + == k2l (g, _'F,) + d,_ F
k'k ” k” 0.2 lIsk—1lI2 ( k-1 k) 0.2 lIsg_1 12 ( k-1 k)

Zkzl_Flz‘—ldk—ll T T
— = (F Sp— ) dg—1" F
0.04 ||Isg—qI* (Fic Sk 1)( k-1 k)

From the line search in Eq. (12) and the inequality
—F{ (F = Fe—1) = F{Fa =1 Fell? > = I FlI?

So,
T 2 ka IFEN? NIsg—111? ™ o(wg—1-1) llsg_1ll*
dfF, > —[IFlI2 — - ool -
0227 [|s_y]I? 1P € 022" [lsy—q 12 IF-1l
to ™ Sk 20| Fk 1dk—1] lsp—111*
£ 004—Ilsk 14 1P ll*
2
dIF Foif2 — L00kllFRl? o*(@roa=Dliseall® | S o2|-Fy_ydg—1|
> —||Fy 2 — okl : :
@™ ||Fge—4l 0.2 [|[Fr—4ll 0.04 [|Fr_4ll
T 2
diFy > —py || Fell
i.e.,
2
— (14 5%k 02 (@g—1=Dlisk-1ll? S’ 0?|-Fi_1di—1]
pic = ( 0.29™ ||Fr_4|I? 0.2 [|Fr—1 l1*IIFg|I? 0.04 ||F—1[I*IIF |I2)
(Y k-1 k-1 k k-1 k

This proves for the parameter-based algorithm gFMPL=1 we use the same steps for the

second new algorithm gEMPL=2,

3.3 Lemma

Using Assumptions 4.1 and the sequence {d;} is known by Eq. (10), then the bounded search

direction is held i.e.
Il < lldill < N Fll

Proof;
diell = I—F + BEMPL 1y
T =D D T
Fi Vi1 —Tio—1Ft Sk—1|[lldg-11l
d S F + ” k Yk—1 k—1%k
APl o [Pl sl
d S F + ” k Yk—1 + 1
el < WFell + T e
IFk||||37k A TR I F kel sk—1ll
d < \|F.|| + +
il < W+ =507 P
T ISk—1ll
Il < 21l + N et
. D 1SN F 4l
By using |t,_4| = 020 sesl and [{x| > 0,

172-111 = 7= Qw1 l1yie-ll + (@ + lwge-1Dllsic-11D)
then the Eq. (17) turn to:
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2| Fpee
ldill < [IFell [2 + 3P Pkl ]

0.2(aplwg—-1yk-1ll+ A+ wg—1DlIsk-11D
From Assumption 4.1 (ii) then:

ldell < lIFll [2+ P Fge—al
kll = 111k 0.2akllSg—1ll(1+(1+L) | wr—11)

0.8
and |wy—1| = I

2 | F el
il < 17l 2+ ool

i NPl
< P
ldicll < || Ficl [2 t 0.36||dj—1]l

From the Dai-Liao search direction we can put (dy_; = —Fj_1):
2

ldill < ClIFll, ie. € =2+

The last result, which gives a sequence of search direction, is restricted by C. This proves for

the parameter-based algorithm gFMPL=1 'we use the same steps for the second new algorithm
PMDL-2

. :
3.4 Lemma [17]

If (¥ € R™) satisfy F(X) = 0 and {x} is generated by Algorithm 1 and 2 that check Lemma
4.3, then
k1 — XIZ < o — ZN? = Nxgerq — x|l
Specifically, {x} is bounded and

Di=ollXkr1 — x|l < o0 (18)
3.5 Lemma
Suppose {x} is generated by Algorithms 1 and 2, then
Jim afldi |l =0 (19)
Proof:

From Lemma 4.4, which leads to the sequence {||x, — X||} which does not increase,
convergent, and thus constrained. As well, {x;} is bounded and Ilim x4 4+1 — x| = 0. From

Eqg. (15) and the line search Eq. (12), we have:
_ |F@)T (-2 _ |awF(zi) dy

21 — x|l = IF(z)lI2 IF @zl = IFCI

arllF(zi)llldll
arllFzlllldell _ -
= F@l alldell =0

Finally, we get:
Jim alid || = 0.

Now we use all the previous Lemmas to demonstrate the global convergence of the two new
algorithms.

3.6 Theorem
Let {x;} and {z,} be the sequences that are generated by Algorithms 1 and 2, then
hr,? inf ||F(x;)|]| =0 (20)
Proof:
The proof will be divided into two cases:
Case I: If lim inf ||d, || = 0, we have lir’? inf ||F(x,)| = 0.

k—oo
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If one uses the continuity of F, then the sequence {x,} has some accumulation point X such
that F(X) = 0. Since {||x; — ¥||} converges and ¥ is an accumulation point of {x;}, it follows
that it converges to X.

Case IlI: If liminf||d|| > 0, we have liminf ||[F(x;)|| >0 and by (19), it holds that

k—o0 k-

’lim a; = 0. Using the line search

m T m 2
[[dgll

—F(x +2 d) d, <o
kT k) Tk e |IFll?

and the boundedness of {x; }, {d}, we can choose a subsequence such that allowing k to go
infinity in the above inequality results

—F(®)Td <0. (21)
On the other hand, from Eqg. (15), we get

—F)Td = p IFGO)II> >0 . (22)
However, Eq. (21) and (22) imply a contradiction. So, it is hr;? inf ||F(x;)|| > 0 does not

hold and the proof is complete.

4. Numerical Tests

In this section, we present the results of the implementation of the two new algorithms
(PMDL-1 & PMDL-2), respectively, and compare the resulting values with the implementation
of the same projection technique with the basic conventional Dai-Liao algorithm that is given
by Eq. (4). All codes were implemented in the MATLAB R2018b program and were managed
on the laptop with an intel COREIi5 processor with 4GB of RAM and a CPU of 2.5GHZ.
Program data for each algorithm ¢ = 0.9,6 = 0.1, 7(PDL) = 0.26,,0 = 0.2. The results were
compared by applying the 3 initial points i.e.:

111 1 1 1 1 1

X1 = (1,1,1,..,1)T y Xp = (E'E'E""E)T y X3 = (E'E'E'”'E)T
that was implemented on 8 problems and tried these algorithms for several dimensions n (1000,
5000, 7000, 12000). The stopping scale for the three algorithms is |[F(x;)|| < 1078,
Algorithms are distinguished by their performance in (lter) the number of iterations., (Eval-F)
the number of function evaluations, (Time) CPU time in seconds, and (Norm) the norm of the
approximation solution. The test problems F(x) = (fi, f2 far -» fn)? Where x =
(x1, X2, X3, ..., x,) T, are listed as follows:
Problem 1 [28]: F;(x) = 2 x; — sin|x;|, fori=12,..,n and Q=R%}.
Problem 2 [29]: F;(x) = e*i— 1, fori=12,..,n and Q =R%}.
Problem 3[29]: F;(x) = In(|x;| + 1) —% fori=12,..,n and Q=R

Problem 4 [30]: F;(x) = min(min(|x;], x?), max(|x;],x})), for i = 1,2,..,n and Q = R}
Problem 5 [31]: F;(x) = e** —1,Fi(x) = e —x;_1 —1,fori=2,..,n—1

Problem 6 [32]: F;(x) = Yi|x;| ,fori=12,..,n and Q =R}

Problem 7 [32]: F;(x) = ir_nla)%lxil Jfori=1.2,..,n and Q =R}

Problem 8 [32]: F;(x) = ¥, |x;| e Z=snGD fori=12,..,n and Q=R"

3939



Al-Kawaz and Al-Bayati Iragi Journal of Science, 2024, Vol. 65, No. 7, pp: 3933-3943

Performance profile: 5.000000e-01
09 r b

LU o § 1

06

04r 1 .

Performance of lteration

03 F - a

02 r b 7
PDL-CG
01 F & ——a—— PMDL-1-CG E
—&—PMDL-2-CG
L L L L 1 L

1.5 2.5 35

%)
L
e

Figure 1: Performance results through several times calculation iterations
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In this paper, we have implemented several (96) tests of these presented problems. We
noticed that the performance of the two algorithms has alternated in terms of these
characteristics:

1- As for the initial points, the third point is considered the best in most functions.
2- About dimensions, we notice that the second initial point is better for more n.

In general, the two new algorithms were the best for the points and dimensions that are given
in this paper. Figures 1-3 show the performance of the first starting point in terms of dimensions
and functions, and they also give a better performance.

5. Conclusions

In this paper, we have been able to demonstrate that the two new algorithms (Modified for
Dai-Liao) are better for the 8 problems that are used within the paper and with the starting
points that are suggested in the previous section. Through Figures 1 to 3, we can say that the
two algorithms are the best according to the explained conditions for problems in achieving
global convergence faster and with the least number of iterations compared to the basic
algorithm and the projected method adopted within the paper. Also, theories used to prove the
convergence of the two new methods gave greater efficiency to them.
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