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Abstract

Seismic inversion technique is applied to 3D seismic data to predict porosity
property for carbonate Yamama Formation (Early Cretaceous) in an area located in
southern Iragq. A workflow is designed to guide the manual procedure of inversion
process. The inversion use a Model Based Inversion technique to convert 3D seismic
data into 3D acoustic impedance depending on low frequency model and well data is
the first step in the inversion with statistical control for each inversion stage. Then,
training the 3D acoustic impedance volume, seismic data and porosity wells data
with multi attribute transforms to find the best statistical attribute that is suitable to
invert the point direct measurement of porosity from well to 3D porosity distributed
volume. The final subsurface porosity model greatly improves the understanding of
the distribution of porosity in the reservoir zones and showing the variations of
porosity both vertically and laterally. The success of the prepared workflow
encourage the transformation it automatically to run the same workflow faster for
the areas that have the same characteristics of carbonate Yamama Formation.

Keywords: Model Based Inversion, porosity prediction, Carbonate Yamama
Formation, Subsurface 3D model.
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Introduction

Seismic exploration is the use of seismic techniques to map subsurface geologic structure and
stratigraphic features [1] and 3D seismic measurements have come as an essential element for
reservoir description [2]. The reflection of seismic waves from subsurface layers illuminate potential
hydrocarbon accumulations, as waves reflect and their amplitudes change reveals important
information about the underlying materials. Seismic amplitude inversion uses reflection amplitudes,
calibrated with well data, to extract details that can be correlated with porosity, lithology, fluid
saturation and geomechanical parameters [3]. The seismic method measures only four fundamental
rock-physics properties; that is P-wave velocity, S-wave velocity, density, and anisotropy. Only the
first three properties are measured with the accuracy required for inversion. Inverting seismic data to
other rock properties implicitly assumes a relationship between the property of one or more of these
fundamental properties. All types of inversion require some form of constraint and need to be
calibrated by tying the result to real or simulated well data [4]. The integration of well-log and seismic
data has been a consistent aim of geoscientists. This has become increasingly important (and
successful) in recent years because of the shift from exploration to development of existing fields with
large numbers of wells penetrating them. One type of integration is forward modeling of synthetic
seismic data from logs and the second is inverse modeling of logs from seismic data this is called
seismic inversion. So, inversion is the process of extracting from seismic data, the underlying geology
which gave rise to that seismic information [5]. Berge, et al. [4] defined the inversion as an attempt to
predict rock properties (porosity, thickness, fluid content, hydrocarbon saturation, etc.) from seismic
data. Other definition of seismic inversion is presented by [6] as the technique for creating sub-surface
geological model using the seismic data as input and well data as controls. Kemper, 2010, [7] defined
seismic inversion as the process of converting seismic reflectivity data to rock property information
ranging from Acoustic Impedance (A.l.) to petrophysical properties such as porosity, volume of shale,
and water saturation.

The objective of the current paper is to perform inversion over 3D seismic volume to predict the
porosity property for a selected carbonate formation located in an area in southern part of Irag through
utilizing CGG program.

Methodology

The inversion workflow includes using STRATA module for converting 3D seismic data of this
formation into 3D A.l. model by using a suite of different logs from five wells (A, B, C, D and E) in
the surveyed area. The suites of logs are including density, sonic P-wave, porosity, and well velocity
survey (Check Shot). Well logs data are in depth domain while seismic data are in time domain.
Synthetic seismogram comes to resolve this problem by unifying depth and time as one parameter.
Target carbonate horizons are defined from synthetic and picked through all volume seismic data to
build an initial model for inversion, next step run inversion analysis to perform inversion over volume
and invert seismic data into 3D A.l. volume. Finally, by using EMERGE module train the inverted 3D
A.l. with 3D seismic data and well porosity log to predict porosity property over volume.

STRATA is a module used to perform both post-stack and pre-stack inversion. In the classic post-
stack domain, STRATA analyzes post-stack seismic volumes to produce an acoustic impedance
volume (A.L). In the pre-stack domain, STRATA analyzes angle gathers or angle stacks to produce
volumes of acoustic impedance, shear impedance and density.

EMERGE is a module uses a combination of multiple seismic attributes to predict some reservoir
parameter of interest that can predict rock property volumes using both well logs and attributes from
seismic data, The idea of using multiple seismic attributes to predict log properties was first proposed
by [8]. The predicted properties can be essentially any log types available, such as porosity, velocity,
density, and shale and water saturation. Using multi-linear regression or neural network analysis,
EMERGE trains itself at the well locations to learn the optimum transform that relates the logs and
seismic data. It then applies that transform to derive a volume of the log property from the seismic
volume(s). Figures-1 and 2 summarize workflows for the steps that have been dependant in this
research and the following gives an explanation of some details for these steps with its theoretical
background.
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Figure 1- Summarize the workflows for steps utilized by using CGG Strata program to convert 3D seismic data to
3D A.l. model and depending on well logs data.
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Figure 2- Summarize the workflows for steps utilized by using CGG Emerge program to convert 3D A.l data to
3D predicted porosity volume depending on seismic data with well log porosity data.

Seismic Wavelet:

Wavelet can be defined as the link between seismic and impedance cube and used to create
synthytic seismogram. The seismic traces (in the stacked seismic section) can be modelled as the
convolution of the earth’s reflectivity and a band limited seismic wavelet which can be written as:
S=w*r 1)
Where: S is the seismic trace, w is the seismic wavelet and r is the reflectivity and *denotes
convolution.

The reflectivity, is related to the A.l. of the earth by:

Z,. .—Z_.
__Pi+1l "Pi )

Pi
Zpi+174pi
Where:

Pi is the zero-offset of P-wave reflection coefficient at the ith interface of a stack of N layers.
Zpi = pixVP; is the ith p-impedance of the ith layer., where p is density, VP is P-wave velocity [9].
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Lindseth, 1979, [10] showed that if we assume that the recorded seismic signal is given in equation
(2), we can invert this equation to recover the P-impedance using the recursive inversion equation
given by:

1+r_.

_ Pi
Zpi+1=pi -1, ®)
|

By applying equation (3) to a seismic trace we can effectively transform, or invert, the seismic
reflection data to P-impedanc (Inverse Model). The low frequency component of the reflectivity is
removed by the effect of band limited wavelet, i.e. it cannot be recovered by the recursive inversion
procedure of equation (3). After proper processing and scaling of the seismic data, the low frequency
component of the reflectivity should be recoverd and this done simply in an intuitive approach by
extracting this component from well log data and add it back to the seismic. This recent approach of
inversion is called Model-Based Inversion [8]. In Model-Based Inversion (M.B.1.), the inversion start
with a low frequency model of the P-impedance and then training this model until obtain a good fit
between the seismic data and synthetic trace computed by applying equations (1) and (2). Both
recursive and model-based inversion use the assumption that extracted a good estimate of the seismic
wavelet [11]. A wavelet amplitude spectrum could be extracted by analyzing the autocorrelation of a
set of traces over a selected time window [12].

Two basic methods for extracting the wavelet could be proceeded within CGG-STRATA module,
That is:

e The first is statistical: by using seismic data alone to extract the wavelet and estimate the
amplitude spectrum from seismic data, the phase of the wavelet cannot be determined from the
data itself, so the phase must supply by user. Zero phase is the default and is commonly used for
wavelets for log correlation [13]. The extracted wavelet from the stacked seismic data is shown in
Figure-3, where the time domain response of the wavelet is shown on the top, and its frequency
domain response on the below.

e The second method is by using the well data (sonic and density log) to give a good estimate of
both amplitude and phase spectra of the wavelet, but this method should be used after correlated
wells and determine the proper depth-time relationship [13] Figure-4. the methods applaied in this
research during create synthetic seismogram process.
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Figure 3- Extracted wavelet statistically from input seismic data.
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Figure 4- Wavelet extracted for all wells with their phases in the study area.

Synthetic seismogram:

Synthetic seismogram is a plot compare between synthetic trace and composite trace (original
seismic data collected near the well location), synthetic trace created by convolution process between
reflectivity calculated from well data and statistical extracted wavelet. The primary well data required
to generate a synthetic trace are sonic log (inverse of the sonic log is the acoustic velocity), density log
and check shots data which are also very important. Sonic log is the principle source of well velocity
data. It provides direct information about the borehole and the rocks penetrated by the drill bit. The
sonic log is a measure of the time necessary for a sound wave to traverse one unit of the earth along
the well bore, usually labeled ‘DT’ and the reciprocal of DT is the velocity (in m/s). The unit for sonic
log is microseconds per foot or microseconds per meter [14]. The aim is to match the measurements
made through well logs (in depth domain) to the seismic data (in the time domain). Thus, check shot
correction had been applied with STRATA-CGG program to make appropriate well-seismic tie for all
wells in the study area. Later on, the corrected synthetic seismogram is correlated with the seismic
volume in wells location to optimize depth-to-time conversion Figure-5.
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Figure 5- Check shot correction is applied using STRATA-CGG program.
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The procedure of creating synthetic is by multiplying the velocity (time-depth relation resulted
from check shot correction) and density data to produce the A.l. data for each reflecting interface in
the subsurface and according to the following equations:

Zpi=pixVP; 4)
Where: Zp; is acoustic impedance, p; is density and VP; is velocity from sonic log.

Reflection coefficient: The reflection coefficient is simply the difference in A.l. between stratigraphic
layers divided by their sum (equation 2). After that, computed reflection coefficient is convolved with
the statistical wavelet to perform a well-to-seismic tie and time shift between synthetic and composite
trace. Then, after stretch and squeeze for the synthetic trace a correlation is made for wavelet extracted
from well to give a good estimate of both amplitude and phase spectra of the wavelet and Maximum
Correlation (M.C.). Group Wavelet (average wavelet for all wells) was used for creating the synthetic
seismogram with STRATA-CGG program which give M.C. 0.72 Figure-6.
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Figure 6- Synthetic seismogram shows correlation between composite trace with red color and synthetic trace
with blue color using group wavelet (Corr. Coef. is 0.717 for highlighted area).

The target horizon and interpretation — STRATA module:

The inversion process is aimed to predict the porosity property of Yamama Formation in an area
located in southern Irag. Yamama Formation is a complex carbonate lithology with highly variable
porosity of Cretaceous age. Five wells is chosen (named A to E) for accurate well-to-seismic tie, the
top and bottom of Yamama Formation are picked in the 3D seismic data for structural mapping
Figure-7. The seismic data are then inverted to obtain acoustic impedance (A.l.) using constrained
inversion algorithm (M.B.1.) to improve the vertical resolution and the prediction of lateral variations
in reservoir quality.
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AR R

Figure 7- Picked horizon, the left is top Yamama Formation time ranges between (2200 msec with red color and
2390 msec with violet color) and the right is bottom of Yamama Formation time ranges between
(2320 msec with red color and 2540 msec with violet color). Map scale: 1:265477

The porosity distribution of the reservoirs is estimated using inverted data of (A.l.). It will be start
with building Low Frequency Model (LFM) (Initial Model). The M.B.I. schemes use well logs and
picked horizon to construct the LFM and for account the missing low frequencies in the recorded
seismic data under the constraints of the geological model and seismic horizons [15,16]. So that, the
result with more low frequency information can lead the inversion to be directed by the seismic as
opposed to single point location of well logs [15]. The missing frequency bands in recorded seismic
data cause problems in the reconstruction of A.l. [17]. When the model is not filled with frequencies
that are missing from the low end of the seismic bandwidth, the inversion result becomes driven more
by the wells and less by the seismic [18 in 15]. For that, low frequency range between (0 -15 Hz) is
added in building the initial model depending on extracted amplitude spectrum from the whole 3D
seismic volume Figure-8. The LFM for M.B.I. is formed by blocking an impedance log from well
Figure-9.

1.00

s 0 5 E = 55 0

35 “«© 5
Frequency (Hz)

Figure 8- Amplitude spectrum of recorded seismic data, frequency range (0 -80).

Figure 9- Initial Model used in inversion. The figure shows location of top and bottom of Yamama Formation
Green color represents low Acoustic Impedance and violet high Acoustic Impedance in the color
scale. Yamama Formation has an impedance values within range between (8188 and 13180).
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Inversion analysis:

The inversion analysis tool shows the results of inverted traces at each well location, overlain on
top of the original impedance logs. It is also shows the synthetic traces that result from the inverted
data and compares them to the input seismic volume. This allows for fast and exact calibration
between inversion results with well logs, allowing quality control and parameter refinement to be
carried out interactively at the well locations before inversion of the full volume [13].

Figure-10a shows the inversion analysis window to well A. The left hand represents A.l. (original
in blue color, low frequency in black color and inverted in red color). It shows the wavelet that has
been used in the convolution. In the middle are the synthetic traces (with total M.C. 0.991 after using
GROUP WAVELET, Figure-10b for all wells) in red color and original seismic traces in black color.
In the right is the picked horizon and the difference Error (=0.068) between synthetic and seismic
trace. Another window of the inversion analysis is shown in Figure-11 that represents the crossplot
between original A.l. and inverted A.l. with M.C. 0.76.

Correlation Inine: 52575 Error
0.997652 Xine: 12410 0.0685452
9544.08 15064.2 )
Time (ms) Horizons
2200
— Top Yamama
2300
1 —Bottom Yamama
2400
2500
2600
Error (D)

Figure 10a- The inversion analysis window for well A.
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Figure 10b- Base map show the best correlation between original and inverted A.l. at each well location after
using group wavelet in inversion analysis.
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Figure 11-The crossplot between original A.l. calculated by equation (4) from well data and inverted A.l.
calculated by equation (2) from seismic data (M. C. = 0.76). Data points for each well are shown in
one color.

Final step of M.B.I. is running inversion process for the whole 3D seismic data and the result is 3D
A.l. data. Figure-12 exhibit impedance slice extracted within 3D A.l. guided by picked horizon (top
Yamama Formation).
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Figure 12- M.B.I. inverted (impedance) slice extracted from inverted data within Yamama Formation (30 msec
below top Yamama Formation) green color represents low Acoustic Impedance and violet high
Acoustic Impedance in the color scale.

There are two important approaches for checking an inversion results. These are impedance
prediction at wells and synthetic—seismic error plots. If the initial model is created using the well as
input, then the match is always likely to be good. A better test is to use a ‘blind” well, not incorporated
in the M.B.1. (Quality Control QC well). This is sometimes referred to as ‘cross validation’ [19]. The
two approaches are used in this research. The first is the synthetic—seismic error plots with least Error
(0.06) and M.C. 0.997 (Figure-10a) and the second use well C as blind well when inversion process is
applied, Figure (13) shows an example of a blind well test with M.C. 0.685.
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Figure 13- Well C as a blind well to check an inversion results. The M.C. is 0.685.

Predicted porosity property - EMERGE module:
In seismic reservoir characterization, porosity is the main property which controlled hydrocarbon

accumulation. Actually this property cannot be measured directly away from the well point. Therefore,
seismic inversion is the best tool to predict this property and others such as lithology, volume of shale
and (water, gas and oil) saturation with best distribution and create subsurface 3D model for each
depending on seismic and well data.

In this research 3D model of porosity is created depending on the information mentioned above
(see Figures-1 and 2). EMERGE module is applied using the inverted 3D A.l. data as external attribute
and compare it with 3D seismic and well data (porosity log) to create relationship in well location
Figure-14 through using internal algorithm provided in this application (No. of the internal algorithm
is 28). These algorithms are representing different types of attributes. This step in the EMERGE is
named training and sometimes called multiattribute transforms. The result of the training is a crossplot
validation error graph which estimate the best algorithm (statistically best fit attributes) correlated to
log porosity in the wells location and used to predicting of porosity over 3D A.l. data Figure-15.
Finally and depending on the relation with well location, a conversion for all data is applied to produce
a 3D porosity data. Porosity slice guided by picked horizon extracted along the 3D porosity which
represents the final model and greatly improves the understanding of the distribution of porosity in the
reservoir zones showing variations in porosity both vertically and laterally Figure-16.
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Figure 14-Crossplot shows a relation between inverted data and porosity from well log with M.C. is 0.78. The
figure shows a good agreement to predict porosity using multi attribute transforms. Data points for each
well are shown in one color. At lower porosity the model slightly under predicts the porosities.
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Figure 15- Crossplot validation error, the left shows No. of algorithm in the horizontal axis and Prediction Error
in The vertical axis. The lower (black) curve shows the error calculated using the Training Data and
the upper (red) curve shows the error calculated using the validation Data. This meaning, only the first
four algorithms will be used for porosity prediction. The right used algorithm (Inverted A.l., Second
Derivative, Instantaneous Frequency and Filter 55/60-65/70).
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Figure 16- 3D model of porosity extracted along Yam ma Formation. Yellow color area shows locations of
higher porosity.

Conclusions:

The prediction of porosity property by using seismic inversion method is needed for intensive and
judicious systematic work. The results is depending on the suitable designed workflow for wavelet
extraction and controled by statistical assessment in each steps of the inversion workflow. Crossplot of
each step should be used to check its success. Otherwise, the step should be repeated to enhance the
statistical values of the results. The enhanced repetition in the steps of the workflow and the inversion
results showed that, wavelet extracted from well data give good correlation in creating synthetic
seismogram than statistical and group wavelet used in inversion analysis that gives the best
correlation. It is found that, low frequency between (0 to 15 Hz) when added to seismic data in the
creation of initial model stage is leading to increase the seismic data control during the inversion
process. The inversion result at well C is not bad when it is used as blind well. Porosity around well A,
B, D and E gives good discrimination than well C. Locations of low A.l. in all wells within Yamama
Formation show high porosity in the inversion result and that support the determination of the
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predicted porosity for the remaining area of the formation depending on seismic inversion. The
execution of each step in the workflow is done manualy. The success of the workflow guide to convert
it to automatic design to be run more fast and to be applied directly for the same formation in anothor
different area in the region that has same depositional environment for Yamama Formation
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