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Abstract 

In this paper we present a study on Peristaltic of fractional generalized Maxwell 

viscoelastic fluid through a porous medium.  A modified Darcy-Brinkman model is 

utilized to simulate the flow of a generalized Maxwell fluid in a porous medium in 

an inclined channel with slip effect. The governing equation is simplified by 

assuming long wavelength and low Reynolds number approximations. The 

numerical and approximate analytical solutions of the problem are obtained by a 

semi-numerical technique, namely the homotopy perturbation method. The influence 

of the dominating physical parameters such as fractional Maxwell parameter, 
relaxation time, amplitude ratio, permeability parameter, Froude number, Reynolds 

number and inclination of channel on the flow characteristics are depicted 

graphically.  

  

Keywords:  Peristaltic Transport, fractional generalized Maxwell, Slip effect, 
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 سط مساميمن خلال و  النقل المتمعج لمعمم ماكسويل الكسري للسوائل اللزجه 
 في قناة مائلة مع تأثير الانزلاق

 

 2احمد مولود عبد الهادي, *1حماديلقاء زكي 

 العراق بغداد, كليه العلوم, جامعه بغداد, علوم الارض, قسم1
 العراق بغداد, جامعه بغداد, قسم الرياضيات, كليه العلوم,2

 الخلاصه
من معمم ماكسويل من  الحركه التموجيه الانتقاليه للسوائل اللزجهم دراسة عن يتقدتم   لبحثفي هذه ا

تعديل نموذج دارسي برينكمان لمحاكاة تدفق سائل ماكسويل المعمم خدم ليسهل اختراقها . ويستل وسي  خلا
الدراسه تمت تحت فرضيه  ول موجي  ويل وفرضيه  ان في وس  مسامي في قناة مائلة مع تأثير الانزلاق . 

من خلال  المسالهذه هل. ويتم الحصول على الحلول التحليلية و العددية التقريبية يكون عدد رينولدز صغير
 المشتقات الجزئيه كسور  ;تاثير الاعداد اللابعديه  تقنية شبه العددية , وهي  ريقة اض راب هوموتوبي . 

ميل  زاويه , وقت الاسترخاء , نسبة السعة , المعلمة النفاذية, فرويد العدد, رقم رينولدز و المعمم ماكسويلل
 الاحتكاك وداله الجريان قد تم ايجادها وتحليلها . , السعه على اختلاف الضغ  ,قوهلقناة ا

 

1. Introduction  

Non-Newtonian characteristics are exhibited by numerous fluids including physiological liquids 
(blood, food bolus, chime), geological suspensions (drilling muds, sedimentary liquids), industrial 

tribological liquids (oil and greases), and biotechnological liquids (biodegradable polymers, gels, food 

stuffs). It is difficult to propose a single model which can exhibit all the properties of non-Newtonian 
fluids. To describe the viscoelastic properties of such fluids recently, constitutive equations with 

ordinary and fractional time derivatives have been introduced. Fractional calculus has proved to be 
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very successful in the description of constitutive relations of viscoelastic fluids. The starting point of 

the fractional derivative model of viscoelastic fluids is usually a classical differential equation which is 

modified by replacing the time derivative of an integral order with fractional order and may be 

formulated both in the Riemann-Liouville or Caputo sense [1]. 
This generalization allows one of define precisely non-integer order integrals or derivatives. 

Considering the relevance of fractional models of viscoelastic fluids, a number of articles [2-8], have 

addressed unsteady flows of viscoelastic fluids in conduits with the fractional Maxwell model, 
fractional generalized Maxwell model, fractional second grade fluid, fractional Oldroyd-B model, 

fractional Burgers model, or generalized Burgers' fractional model for a variety of different geometries 

for wall surface. Solutions for the velocity field and the associated shear stress in such studies have 
frequently been obtained by using various transforms including the Laplace transform, Fourier 

transform, Weber transform, Hankel transform or discrete Laplace transform methods. Oscillating (or 

transient) flow of non-Newtonian fluids through a channel or tube is a fundamental flow regime 

encountered in many biological and industrial transport processes. 
The quasi-periodic blood flow in the cardiovascular system, movement of food bolus in the 

gastrointestinal tract and urodynamic transport in the human ureter are just several example of 

oscillating flow in biological systems. Industrial application of oscillating flows includes slurry and 
waste conveyance systems employing roller pumping and finger pumps. The low Renolds numbers 

characterizing such flows, and the fact that, the dimensions of the channel and macromolecules in the 

fluid can be of the same order of magnitude, can lead to magnitude, can lead to effects unseen in 
macroscopic systems. 

As the fractional models have been studied extensively in recent years in biomedical transport 

problems [9], [10] investigated the peristaltic flow of fractional Maxwell fluid through a channel. 

Further studies have utilized the generalized fractional Maxwell model, fractional Oldroyd-B model, 
and fractional Burgers' model [11] in a variety peristaltic flow configurations. 

Some semi-numerical and analytical methods including the homotopy perturbation method (HPM), 

homotopy analysis method (HAM), variational iteration method (VIM), and adomian decomposition 
method (ADM) have been employed to obtain robust solution of fractional partial differential equation 

(FPDE). Perturbation method is one of the well-Known methods to solve these kinds of nonlinear 

equations and was studied by number of research [12, 13]. Since there are some limitations with the 

common perturbation method also, because the basis of the common perturbation method was upon 
the existence of a small parameter, developing the methods for different applications is very difficult, 

Therefore, many different new methods have been introducing recently and some new ways to 

eliminate the small parameter have been introduced, including artificial parameter method by [14], the 
variation iteration method by [15,16] and the homotopy-perturbation method by [17]. 

To the beat knowledge of the authors, no studies thus far examined analytically the oscillating flow 

of generalized Maxwell fluids through a porous medium in an inclined channel. In this paper studied 
this case and furthermore employ the HPM to derive approximate analytical solution. Numerical 

results for different cases are depicted graphically.   
2. Definitions 
2.1 Gamma function  

The gamma function      is defined by the integral  

     ∫              

 
                                                                                                                     (1) 

Some of common properties of gamma function are  

i-             
ii-           
2.2 Riemann-Liouville fractional integral  

Let R(v)>0 and let f be piecewise continuous on (0,∞) and integrable on any finite subinterval of 
[0,∞). Then fore t >0 we call 
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The Riemann-Liouville fractional integral of  f of   order v. 
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2.3 Fractional derivative 

Let f be a function of class C and let   > 0. Let  m be the smallest integer that exceeds  . Then the 

fractional derivative of f of order   is defined as: 

)]([)( tf
v

D
m

DtfD





, 0  , t> 0,                                                                                              (3) 

(If exists) where 0 mv . 

3. Mathematical Model 
The constitutive equation for shear stress-strain relationship of viscoelastic fluids obeying the 

fractional Maxwell model [1], [18] are given by: 

.
)
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                                                                                                                             (4)       

Where 
.

,,,,
1

 t  are the relaxation time, shear stress, viscosity and the rate of shear strain 

respectively, and    is fractional parameter  such that 10   . If 0 , this model reduces to the 

classical Newtonian model and when 1 , the model reduces to the Maxwell model. 

The fractional parameter     characterizes the rheological behavior of materials that is intermediate 

between the Newtonian and Maxwell viscoelastic fluids. This model is composed of a Hooke element 
connected in series with a Scott-Blair element. The details are given in [1]. 

The well-known Darcy law states that, for the flow of a Newtonian fluid through a porous medium, 

the pressure gradient caused by the fractional drag is directly proportional to the velocity. Recently, 

based on the local volume averaging technique and balance of the forces acting on volume element of 
viscoelastic fluids in porous media, [19] developed a modified Darcy-Brinkman model for flows of 

some models of viscoelastic fluids in porous media. Darcy resistance quantifies the impedance to the 

flow in the bulk of the porous space. For generalized Maxwell fluid flows in porous media, the Darcy 
resistance [18] can be expressed as follows: 
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Where R, k,   and u  designate the Darcy resistance, porosity of the porous medium, permeability, 

and axial velocity, respectively. Figure-1 shows the geometry of oscillating flow through a porous 
medium, for the present problem. 

 
Figure 1- Geometry of the two dimensional peristaltic transport in an inclined channel 
 

The constitutive equation for the geometry under consideration Figure-1, i.e., oscillating peristaltic 
flow through a uniform porous medium takes the form: 
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Where  ,,,, cah are the transverse oscillating displacement, wavelength, half-width of the channel, 

wave velocity and amplitude, respectively. This model reduce to ordinary Newtonian model if 0  

and classical Navier Stokes motion in horizontal channel when 0
*
 .   

4. Governing equation 
The governing equations of motion in an inclined channel for generalized Maxwell fluid flow 

through a porous medium using the above formulations can be shown to take the form:  
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Introducing the following dimensionless parameters:  
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where h ,                       , are the ratio of the width of channels ,the wave number , permeability 

parameter, wave number , Froude number, shear stress  ,amplitude ratio, Reynolds number  
respectively. 

Substitute the values of shear stress and Darcy resistance from Eqs.(4) and (5) into Eqs.(7), (8),(9) 

using the non-dimensional parameters from Eq.(10) we get: 
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The associated boundary conditions are  
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Integrating Eqs.(11) ,(12) with respect to y and using the first and second condition of Eq.(13), the 

axial velocity is obtained as follows: 
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The volume flow rate is defined as  
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The transformations between the wave and the laboratory frames, in the dimensionless form, are given 

by 
 

.1,,  uUyYtxX                                                                                               (16)  

Using the transformations defined in Eq.(16) it follows that Eq.(6) can be reduced to  
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The volumetric flow rate in the wave frame is given by  
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Which, on integration, yields 

hQq                                                                                                                                               (19) 

The averaged flow rate 
1

Q is defined as  
1

0
1

QdtQ  from (16) we have hqQ   hence  

2
1

1

0
)(

1


  qdthqQ                                                                                                                  (20) 

\Then, we get 

hQQ 
2

1
1


                                                                                                                              (21)   

))(
1

)((

)
2

1
1

(
2

)
*

sin
Re

)(
1

1(
xfxfh

hQw

Frx

p

t 



















                                                                         (22) 

Using Eqs. (14) and (22), the stream function ( ) in the wave frame given by (
y
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It is evident form Eq.(23) that the stream function is independent of fractional parameter and 

relaxation time and inclined channel. 

5. (HPM) Solutions 
To solve the governing equation the method of Homotopy perturbation method (HPM) will be 

used. Equation(18) can be rewritten as  
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Equation (23) can be simplified to yield  
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According to the HPT given by [36]. We construct the following homotopy: 
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Furthermore [15], we use the homotopy parameter "
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q  " to expand the solution: 
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and comparing the like powers of 
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q , we obtain the following set of fractional partial differential 

equation(FPDE): 
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And so on the method is based on applying the operator 

tJ (the inverse operator of the Caputo 

derivative ftD


(on both sides of Eq.(29), which leads to: 
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Thus, the exact solution may be obtained as  
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tE is the Mittag-Leffler function in one parameter. 

The pressure difference across one wave length ( p ) and the fractional force across one 

wavelength ( F) are defined by the following integrals: 
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6. Numerical results and discussion  

Numerical results have been presented in this section to study the effect of fractional viscoelastic 

behavior on oscillating peristaltic flow through a porous medium in an inclined channel with slip 
effect. Mathematica software is used to plot all the figures and 100 terms of mittag-Leffler function 

have been employed in the computations. All figures have been plotted based on Eqs.(33) & (34). The 

graphical plots are presented for the effects of relevant value of control parameters, i.e., the relaxation 

time (
1
 (, fractional parameter ( ), slip parameter (β), permeability parameter (k), amplitude ratio      
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Renold number (Re), Froud number (Fr) and inclined channel ( *
 ). The salient feature of 

peristaltic transport for fractional generalized Maxwell viscoelastic fluids through a porous medium in 
an inclined channel are discussed through Figures From (2-19). 

6.1 The Pressure Rise Distribution:          

Figures from (2-9) are drawn between pressure difference across one wavelength and averaged flow 
rate. The variations of the volumetric flow rate of peristaltic waves with pressure gradient for different 

values of parameters are studied through these figures. These figures demonstrate that here is a linear 

relation between pressure and average flow rate. In Figure-2 we can see that with increases the Renold 
number (Re), the volumetric flow rate gradually decreasing  in the entire pumping region , free 

pumping region and in  co-pumping  .In Figure-3 shows that, with increases the fractional  parameter 

(  , the volumetric flow rate gradually increasing in the entire pumping with free pumping  but the 

volumetric flow rate decreasing in co-pumping.  Figure-4 we see that, when increasing the slip 
parameter (β), the volumetric flow rate can be gradually reduced in the entire pumping region and the 

free pumping region but increasing in co-pumping region. Figure-5 we see that, with increases the 

permeability parameter (k), the volumetric flow rate can be gradually reduced in the entire pumping 
region and the free pumping region but increasing in co-pumping region. Figure-6 shows that, with the 

rise in the relaxation time (   , the volumetric flow rate decreases in the pumping region and in free 

pumping and co-pumping the flow rate increasing.  Figure-7 shows that, when the Froud number (Fr) 

increases, the volumetric flow rate increasing in the pumping region, free pumping region and in co-

pumping region. Figure-8 shows that, when the inclined channel parameter (   ) increases, the 

volumetric flow rate decreasing in the pumping region, free pumping region and in co-pumping region. 

Figure-9 shows that, when the magnitude of amplitude ratio increases, the volumetric flow rate is 
increasing in the pumping region and free pumping region but in co-pumping region the volumetric 

flow rate decreasing. 

6.2 The Frictional force distribution: 
Frictional force (F) in the case of fractional Maxwell fluid with an inclined channel is calculated 

over one wave period in the term of averaged volume flow rate. Figures From (10-17) are illustrated to 

show the variation of frictional force with averaged flow rate for different values pertinent parameters. 

It can be seen that the effect of increasing the flow rate is to enhance the frictional force. In Figure-10 
we can see that with increases the Renold number (Re), the fractional force  gradually increasing  .In 

Figure-11 shows that, with increases the fractional  parameter (  , the fractional force  gradually 

decreasing at Q1<0.25  but the fractional force increasing Q1>0.25. Figure-12 we see that, with 
increases the slip parameter (β), the fractional force can be gradually rise at Q1<0.25 but decreasing at 

Q1>0.25. Figure-13 we see that, with increases the permeability parameter (k), the fractional force can 

be gradually rise at Q1<0.25 but decreasing at Q1>0.25.Figure-14 shows that, with the rise in the 

relaxation time (   , the fractional fore increases atQ1<0.25 and at Q1>0.25 the fractional force 
decreasing. Figure-15 shows that, when the Froud number (Fr) increases, the fractional force 

decreasing. Figure-16 shows that, when the inclined channel parameter (  ) increases, the fractional 

force increasing. Figure-17 shows that, when the magnitude of amplitude ratio increases, fractional 
force decreasing. 

6.3 The streamline distribution  

The streamline on the center line in the wave frame reference are found to split in order to enclose 

a bolus of fluid particles circulating along closed streamline under certain conditions.  This 
phenomenon is referred to as trapping, which is a characteristic of peristaltic motion. Since this bolus 

appears to be trapped by the wave, the bolus moves with the same speed as that of the wave. Figure-18 

and -19 drawn for streamline patterns. The impacts of permeability parameter and slip parameter on 
trapping are discussed through these figures. It is important to observe that the size of trapping bolus 

reduces when the magnitude of said parameters (k and β) increases. 
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Figure 2- Pressure versus averaged flow rate for difference value of Re  at Fr =0.1, 
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Figure 3- Pressure versus averaged flow rate for difference value of   at Fr=0.1,Re=1, 
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Figure 4- Pressure versus averaged flow rate for difference value of β  at Fr =0.1, 
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Figure 5- Pressure versus averaged flow rate for difference value of k  at Fr =0.1, 
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Figure 6- Pressure versus averaged flow rate for difference value of  
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1
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Figure 7- Pressure versus averaged flow rate for difference value of Fr  at Re =1, 
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Figure 8- Pressure versus averaged flow rate for difference value of  
*   at Fr =0.1, 
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Figure 10- Fractional force versus averaged flow rate for difference value of Re  at Fr =0.1, 
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Figure 11- Fractional force versus averaged flow rate for difference value of γ at Fr=0.1,Re=1, γ=
 

 
=1, k= 0.1, 

α*= 0.2    =0.5,β=0.1. 

 

 

Figure 12- Fractional force versus averaged flow rate for difference value of β  at Fr =0.1, 
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 =1, Re= 1 , 
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Figure 13- Fractional force versus averaged flow rate for difference value of k  at Fr =0.1, 
4

1
 =1, Re= 1 , 

2.0
*
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Figure 14- Fractional force versus averaged flow rate for difference value of γ=
 

 
 at Fr=0.1,Re=1, k= 0.1, α*= 

0.2, γ=
 

 
    =0.5,β=0.1. 
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Figure 15- Fractional force versus averaged flow rate for difference value of Fr  at Re =1, γ=
 

 
 =1, k= 0.1 , α*= 

0.2, γ=
 

 
 ,   =0.5, β=0.1. 

 

 

Figure 16- Fractional force versus averaged flow rate for difference value of  
*   at Fr =0.1, 
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Figure 17- Fractional force  versus averaged flow rate for difference value of    at Fr =0.1, 
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Figure 18- Streamline in the wave frame(axial coordinate. transverse coordinate for different value of Ha in    

Q1 =0 . 5  &    = 0.5  at (a)  k = 0.1, (b) k=0.2, (c) k=0.6, (d)k=0.8 and the other parameter is β=0.1  , 

  

  
Figure 19- Streamline in the wave frame(axial coordinate. transverse coordinate for different value of Ha in    

Q1 = . 5  &    = 0.5  at (a)  β = 0.1, (b) β =0.2, (c) β =0.4, (d)Ha=0.6 and the other parameter  is k = 0.1 , 
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