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Abstract  
In this paper, we will show that the Modified SP iteration can be used to 

approximate fixed point of contraction mappings under certain condition. Also, we 

show that this iteration method is faster than Mann, Ishikawa, Noor, SP, CR, 

Karahan iteration methods. Furthermore, by using the same condition, we shown 
that the Picard S- iteration method converges faster than Modified SP iteration and 

hence also faster than all Mann, Ishikawa, Noor, SP, CR, Karahan  iteration 

methods. Finally, a data dependence result is proven for fixed point of contraction 

mappings with the help of the Modified SP iteration process. 
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 ةيشانكمل المحسنة لتقارب النقاط الصامدة للمؤثرات ا SPتكرارات حول 
 

 *معمر بدري عبد, زينة زكي جميل
 , بغداد, العراقدجامعة بغدا  ,كلية العلوم , قسم الرياضيات

 
 الخلاصة

النقطة الصامدة للمؤثرات المحسنة ممكن استخدامها لتقريب  SPحث سوف نبين بأن تكرارات في هذا الب
ايشي  ,شرط معين كذلك بينا بأن طريقة التكرار هذه اسرع من الطرق التكرارية الاتية مانالانكماشية تحت 

اسرع  Sان طريقة بيكارد من النمط واكثر من ذلك بينا تحت نفس الشرط بينا  ,كروان  , SP , CR ,نور ,كاوا
البيانات المعتمدة برهنت في ظل تكرار نتيجة المحسن وبالتالي اسرع من التكرارات اعلاه واخيرا  SPمن تكرار 

SP .المحسن للمؤثرات الانكماشية 
 
1. Introduction      

In Agarwal et al [1] showed that by using certain condition, S-iteration method converges at a same 
rate as Picard iteration and faster than Mann iterative method. After, Khan [2] showed that normal S-

iteration faster than all of Picard. Mann and Ishikawa Iterative methods for contractions. Recently in 

[3] Kadioglu and Yildirim introduce a new iterative without name, both of Kadioglu and Yildirim are 
used different condition to show that this iterative converges faster than S-iteration iterative and the 

normal S-Iteration. Çeliker in [4] give a name to this process, she called it Modified SP iterative. 

In a paper of Soltuz [5] establish the data dependence result of Ishikawa method for contraction 

mappings. In [6] Soltuz and Grosan used contractive-like operators to establish a data dependence 
result of Ishikawa iterative process. Recently [7] Asaduzzaman and Zulfikar   established a data 

dependence result of Noor iterative for contractives like operoters. 

This paper consists of three sections: In section 1, we used the same condition in [3] to study rate of 
converge of Modified SP iteration with various iterations schemas. In section 2, we give an example 
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explain the rate of convergence. Finally in section 3, we prove the data dependence result of Modified 

SP iterative scheme using contraction operator and certain condition.  

Throughout this paper,   is the set of all non-negative numbers, and     is the set of all fixed points of 

an operator   .  

2. Preliminaries: 

In this section we will recall definitions that we need them in the rest of our paper.  

Definition2.1: [8] 

Let   be a normed space and C be a nonempty closed convex subset of     and       be a 

mapping,   is called contraction mapping if their exist    (   ) such that 

        ‖     ‖     ‖   ‖     For all                                                                                   (     ) 

Definition 2.2: [8] Let E be a normed space  ,  ̃      be two operators, we say that  ̃  is an 

approximate operator of   if for all       and for fixed     we have  

                                                                 ‖     ̃  ‖                                                                                   (   ) 
Now we introduce some iteration methods that we will used them in our paper: 

Definition 2.3: 

Let {  } 
   {  } 

  {  } 
  be real sequences in  (   ) . The following iteration processes are 

referred to as Picard [9], Mann [10], Ishikawa [11], Noor [12], SP [13], S-iteration [14], normal S-

iteration [15], CR [16], Picard-S iteration [17], Modified SP iteration [3, 4], Karahan iteration [18], 

respectively  

{
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   (    )          
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                                                                                                                                                 (1.12)                                                                                           
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 ̃     

 ̃    (    )  ̃       ̃   

 ̃  (    ) ̃       ̃   

 ̃  (    ) ̃       ̃      

                                                                                                                                                (1.13) 

If we want to compare speeds of above iteration methods we need the following definition about 

the rate of convergence which is due to Brind [19]. 

Definition 2.4 [19] Let{  } 
 , {  } 

  be two sequences of real numbers that converge to   and  ,    
respectively, and assume that there exists 

        
         

         
    

(a) If     , then it can be said that  {  } 
  converges to a faster than {  } 

   to  . 

(b) If       , then it can be said that {  } 
   and {  } 

   have the same rate of convergence. 

3. Rate of convergence 

In this section, we will show that Modified SP-iteration process is faster than all of Mann (1.4), 

Ishikawa (   ), Noor (   ), Karahan (    ), SP-iteration (   ), CR (    )   processes.  Also we show 

that Picard- S iteration (    ) converges faster than Modified SP- iteration and thus Picard S -iteration 

converges faster than all above process. 

The following theorem shows that the three-step iterative Method Modified SP-iteration (    ) 
faster than   two-step iterative method Mann (   ) and three-step iterative method Ishikawa (   ). 
Theorem 3.1 Let C be a nonempty closed convex subset of normed space E , and T be a contraction of 

C into itself. Suppose that each of iterative processes of Mann (   ) iterative and Ishikawa (   ) 
iterative and Modified SP-iteration (    ) converge to the same fixed point p of T where 

 {   } {    }  {    } be sequences such that for some λ,                  for all     then the 

Modified SP-iteration (    ) converges faster than Mann(   ) and Ishikawa(   ) iterative.   

Proof. For Modified SP-iteration (    ), we obtain   
‖        ‖   ‖       ‖   
                       ‖      ‖   
                     ‖(    )             ‖    
                     ‖(    )(    )    (      )  ‖    
                  [(    ) ‖    ‖     ‖    ‖]  
                [         ] ‖    ‖  

                [      (   )] ‖ (     )              ‖               

                [(      (   ))((     ) ‖(    )‖     ‖    ‖)]  

               [(      (   )) (      (   )) ] ‖    ‖               

                   (     (   ))
 
 ‖    ‖        

                       

              [  (     (   ))
 
]
 
‖    ‖                                                                                    (    ) 

Let Mn=[  (     (   ))
 
]
 
‖    ‖                                                                                        (    ) 

From Mann iteration (   ), and by induction, we obtain that  
‖  ̂     ‖  ‖(    )   ̂           ̂    ‖ 

 ‖(    ) (  ̂   )      (   ̂   )‖ 

  (    ) ‖  ̂   ‖      ‖   ̂   ‖ 
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  (    ) ‖  ̂   ‖       ‖  ̂   ‖ 

 [   (   )]‖  ̂   ‖ 

       
      [   (   )]       ̂0 – p   
  Let      [   (   )]        0 – p     
From Ishikawa (   ), process, we obtain that 
‖      ‖  ‖(    )                ‖ 

 ‖(    ) (      )      (      )‖ 

  (    ) ‖    ‖      ‖     ‖ 

  (    ) ‖    ‖       ‖    ‖ 

 (    ) ‖      ‖     ‖(    ) (      )    (       ) ‖ 

 (    ) ‖      ‖      (    )‖      ‖          ‖      ‖ 

 (    ) ‖      ‖      (    )‖      ‖          ‖      ‖                              

    [     (   )        (   )]  ‖     ‖ 

     [    (   )     (   )]  ‖     ‖ 

                      
      [    (   )     (   )]  ‖     ‖ 

Put      [    (   )     (   )]   ‖     ‖  

Now after simple compute we get  

 
     

   
      

[ (   (   ) ]
 

 [    (   )    (   )]   
 
  (    )  

    –    
      as      

and 
     

    
      

 [  (   (   ))  ] 

[     (   )]
  

 
  (    )  

   ̂  –    
     as      

Hence {  }  converges to    faster than {  ̂ }, {  }.  
The following theorem shows that the three-step iterative methods Modified SP iterative (    ) 

faster than Karahan (    )  Noor (   ) . 
Theorem 3.2 Let C be a nonempty closed convex subset of normed space E, and T be a contraction of 

C into itself. Suppose that each of iterative processes Karahan iterative (    ) and Noor iterative 
(   )and Modified SP-iteration (    ) converge to the same fixed point p of T where 
{  }  {  } {  }  be sequencese such that for some λ,                  for all     then the 

Modified SP-iteration (    ) converge faster than Karhan (    ) and Noor iterative(   ).   
Proof: 

From Karahan iterative (    ), we obtain that  
‖        ‖  ‖(    )                    ‖    
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  [(    ) ‖       ‖    ( (    ) ‖       ‖      (    )‖       ‖        

         ‖       ‖ )] 
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   [   (   )     (   )] ‖       ‖               

          

  [ (   (   )     (   ))]
 
 ‖       ‖ 

 Let Kn =[ (   (   )     (   ))]
 
 ‖       ‖ 

   From Noor iterative (   ), we obtain that  
‖      ‖  ‖(    )               ‖ 

                         (    )‖   – ‖      ‖   –  ‖    
 (    )‖   –  ‖      ‖(    )               ‖    

 (    )‖   –  ‖       ((    ) ‖   – ‖      ‖   –  ‖)    
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  (    )‖   – ‖       (    ) ‖   –  ‖         ‖   – ‖             
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by (1.15) we have  Mn=   [  (     (   ))
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‖    ‖ 

Now note that: 
     

   
 

 [  (     (   ))  ] 

[     (     )        (   )          (   ) ] 
 
        

    –    
      as      

and 
     

   
  

 [  (   (   ))  ] 

 [ (   (   ) –     (    ))] 
 
        

      –    
       as      

Hence {xn} converges  to p faster than {wn      n}. 

                                                                                                                                                                                                                                                                                                                      
The following theorems show that the following three-step iterative methods Modified SP-iteration 

(    ) faster than SP (   ), CR (    ). 
Theorem 3.3 Let C be a nonempty closed convex subset of normed space E, and T be a contraction of 

C into itself. Suppose that each of iterative processes CR iterative(    ),  SP- iteration (   ) and 

Modified SP-iteration (    ) converges to the same fixed point P of T where {  } {  } {  }  be 

sequences  such that for some λ  0< λ ≤ αn   βn,ɣn <1 for all n      then the Modified SP-

iteration(    ) converges faster than CR (    )and SP-iteration (   ).   
Proof: 

From CR (    ) iterative, we obtain that  
‖  ̂       ‖  ‖(    )   ̂           ̂    ‖ 
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 From SP-iteration (1.7), we obtain that  
‖  ̂     ‖  ‖(    )   ̂           ̂    ‖ 

                 ‖(    )(  ̂     )     (   ̂    ) ‖ 

                  (    (   ))‖  ̂      ‖ 

                 (    (   ))‖(    )(  ̂     )     (   ̂      )‖ 

                 (    (   )) (    (   )) ‖  ̂      ‖          

                 (    (   )) (    (   )) ‖(    )   ̂           ̂    ‖          

                 (    (   )) (    (   ))(    (   )) ‖  ̂    ‖          

              ≤   (   (   ))
 
         n –     

                 

            ≤ [(   (   ))
 
]
 

 
    ̂0 – p  

 Let SPn=[(   (   ))
 
]
 

    ̂0 – p  



Jamil and Abed                                        Iraqi Journal of Science, 2015, Vol 56, No.4B, pp: 3230-3239 

3235 

by (1.15) we have  Mn=   [  (     (   ))
 
]
 
‖    ‖ 

Finally we get 

     

    
      

 [(   (   ))
 
]
 
  

 [(   (   ))
 
]
 
 
 
        

   ̂  –    
     as     .  

 and 
     

    
      

 [  (     (   ))  ] 

[  (   (   )(      (   )] 
 
        

   ̂  –    
      as       

Hence {xn } converges faster than     n        n }  to p.                                                                                  

The following theorem explain that the three-step iterative methods Picard S-iteration (    ) faster 

than   Modified SP-iteration (    ). 
Theorem 3.4 Let C be a nonempty closed convex subset of normed space E, and T be a contraction of 

C into itself. Suppose that each of iterative processes Picard S-iteration (    ) and Modified SP-

iteration (    ) converges to the same fixed point p of T where {  } {  } {  }  be sequences  such 

that  for some λ,               for all      ,Then the Picard S-iteration (    ) converges 

faster than modified SP-iteration (    ).   
Proof. 

 For Picard S-iteration (    ) we obtain that 
‖  ̂      ‖   ‖   ̂    ‖  

                       ‖  ̂    ‖ 

     ‖(     )(   ̂     )       (   ̂   )‖ 

      [(     ) ‖   ̂  –   ‖     ‖   ̂  –   ‖] 

     [(     ) ‖  ̂     ‖     ‖  ̂     ‖] 
       [(     ) ‖  ̂     ‖     ‖(     )  ̂          ̂   ‖]    
     [(     ) ‖  ̂     ‖     (     )‖  ̂     ‖         ‖  ̂     ‖] 
     [(     )      (     )         ]‖  ̂     ‖ 

       [     (    ) ] ‖  ̂     ‖ 

      
      [  (     (    ) )]  ‖  ̂     ‖    

Let     [  (     (    ) )]  ‖  ̂     ‖ 

For Modified SP-iteration and by (    ) we have Mn=[  (     (   ))
 
]
 
‖    ‖ 

Now 
     

   
      

 [  (     (    ) )]  

 [  (     (   ))  ] 
 
    ̂     

    –    
     as      

Thus {  ̂} converges to p faster than {x n }.                    
                                                                                                                                                                   

4. Application 
We use the following example to backup our above analytical proof.  This example shows that All 

the iterative methods converge to the same fixed point   . Also Modified Sp iteration converges faster 

than all Mann, Ishikawa, SP, Noor, CR, Karahan and  Picard-S iteration method  converge faster than 
Modified Sp iteration, so Picard-S iteration still faster iterative. 

Example 4.1. Let     and   [   ). Let       be a mapping defined by    √    
 

  for 

all         it is easily seen that the mapping T is contraction mapping with the unique fixed point 

  2   take {  }  
 

 
   {  }  

 

  
  {  }  

 

 
     

 

 
  with initial value   .  
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Table 1- Compare the speed of above processes 

 
No of it Picard Modify SP CR Karahan SP Noor Ishikawa Mann 

1 10 10 10 10 10 10 10 10 

2 2.1142 2.3518 2.4196 2.7168 3.4278 6.2746 6.2827 6.4422 

3 2.0025 2.0196 2.0313 2.0881 2.2754 4.3012 4.3119 4.5038 

4 2.0001 2.0011 2.0024 2.0113 2.0543 3.2455 3.2557 3.4278 

5 2.0000 2.0001 2.0002 2.0015 2.0108 2.6764 2.6848 2.821 

6 2.0000 2.0000 2.0000 2.0002 2.0021 2.3681 2.3744 2.4747 

7 2.0000 2.0000 2.0000 2.0000 2.0004 2.2006 2.205 2.2754 

8 
 

2.0000 2.0000 2.0000 2.0001 2.1094 2.1123 2.1602 

9 
 

2.0000 2.0000 2.0000 2.0000 2.0597 2.0616 2.0933 

10 
   

2.0000 2.0000 2.0325 2.0338 2.0543 

11 
   

2.0000 2.0000 2.0178 2.0185 2.0317 

12 
    

2.0000 2.0097 2.0102 2.0185 

13 
    

2.0000 2.0053 2.0056 2.0108 

14 
    

2.0000 2.0029 2.0031 2.0063 

15 
     

2.0016 2.0017 2.0037 

16 
     

2.0009 2.0009 2.0021 

17 
     

2.0005 2.0005 2.0012 

18 
     

2.0003 2.0003 2.0007 

19 
     

2.0001 2.0002 2.0004 

20 
     

2.0001 2.0001 2.0002 

21 
     

2.0000 2.0000 2.0001 

22 
     

2.0000 2.0000 2.0001 

23 
     

2.0000 2.0000 2.0000 

 

 
Figure 1- The above figure declares the different of speeds of the iterative methodes.     
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5. A Data Dependence Result 

In this section we show that, if T is contraction mapping and        and Modified SP iterative 

method  converges to some fixed point      , then we can computing p by using  ̃ satisfying (1.2), 

 ̃ the fixed point  of the approximatet  ̃    
But first we give need the following results: 

Lemma5.1 Let { an } nonnegative sequence suppose that there exist            such that             

           (   )               for all     n0 where     (   )  and      0 for all          then               

0 ≤             an                    

Proof: 

It is clear that, There exist             such that       ≤                  for all       

We claim that              (   )                                 for all       

By mathematical induction: 

If        then           (   )                    

Suppose that the statement true when       

i.e.         (   )                                 

If      , then by our hypothesis we get 

          (   )                 

                (   )  [   (   )                               ]            

                     (   )                   (   )    
    

                

                      (   )                      
    

            
    

              
    

        

                       (   )                     
    

        

By Taking limit sup for both sides we get: 

                   ≤   
                  

                                                                                                                                                                   
From Picard-Banach theorem and by taking     to the inequality (    ) we get the following 

proposition.                                                                                                                                                    

Proposition 5.1 Let C be a nonempty closed convex subset of normed space E , let T be a contraction 

of C into itself, let {  } be an iterative sequence generated by (    ) with real sequence 
{  } {  } {  }  for som λ  where               for all         then {  } converges to a 

unique fixed point of T say P.                                                                                                                                                       

 Now we can establish the following data dependence result. 

Theorem 5.1 let   ̃   be an approximate of    satisfying (1.1). Let {xn} be an iterative sequence   

generated by Modified SP iteration for   and define an iterative sequence  

{ ̃  }   as follow: 
 

{
 
 

 
  ̃       

 ̃      ̃ ̃ 
 ̃   (    )        ̃    

     (    ) ̃      ̃ ̃      

                                                                                                (5.1) 

Where {βn}, { αn }be real sequence in [0,1] satisfying              for some λ if        and 

   ̃     ̃   such that      ̃   ̃    as   n     then for    > 0 and     (   ) we have 

       ̃   ≤   
    

  (    )
    . 

Proof: 

         ̃      =            ̃    ̃    ̃ ̃      

                             ≤            ̃      ̃    ̃ ̃    
                              ≤   L          ̃                                                                                                  (5.2) 

On the other hand 

   ‖   –  ̃ ‖   ‖(    )             (    )         ̃   ‖         

                        (    )                  ‖      ̃   ‖     

                         (    )                  (                ) 
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                             (    )                                      

                              [           ]                   

                              [    (   ) ]                   

                          [   (   ) ]                                                                                         (5.3) 
But, 

‖   –    ‖   ‖(    )             (    )  ̃      ̃ ̃ ‖ 

                      (    )‖       ̃ ‖     ‖       ̃ ̃ ‖ 

                      (    )‖       ̃ ‖      ‖      ̃ ‖       

                      [(    )      ]‖      ̃ ‖              

                      [(    )      ]‖      ̃ ‖                                                                                  (5.4) 
                         

Combining (   ) (   ) (   ) and using the facts that L and L
2     (   )  

 

         ̃          [   (   ) ] ‖      ̃ ‖             

                                     [   (   ) ] ‖      ̃ ‖      

                                    [   (   ) ]  ‖   –  ̃ ‖     

                                    [   (   ) ]‖   –  ̃ ‖   (   ) 
  

 (   )
  

Put              ̃   , (   )  (   ) ,    : = 
  

  (    )
   

In Lemma 5.1 we get:  

0 ≤                      ̃   ≤            
   

  (    )
   

From proposition (5.1) we know that     
   

     . Thus, using this fact together with the assumption  

      
   

  ̃ =  ̃  we obtain that 

      ̃   ≤   
   

  (    )
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