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Abstract:

In this paper, an ecological predator-prey model with time delay is proposed and
studied analytically and numerically. The stability and bifurcation analysis of the
proposed model with a Crowley-Martin response function are covered in this article.
In the beginning, equilibrium points of the proposed model are identified. Secondly,
the local asymptotic stability of the equilibria and Hopf-bifurcation are discussed by
the characteristic equations of the system. Finally, by creating a suitable Lyapunov
function and LaSalle’s invariance principle, the equilibria's global asymptotic
stability is examined.

Keywords: Prey-predator model, Crowley-Martin, Stability analysis, Hopf-
bifurcation
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1 Introduction:

The dynamic interaction between predators and their prey has long been and will remain
one of central concepts among both mathematical and ecological science. The term
competitive can be defined as one of the most ancient and fascinating concepts in community
ecology which contends no more than n species can exist simultaneously on n infrastructure
[1,2,3,4]. Gauss [3] validated it using tests on Paramecium cultures. It was thought to be true
in the lab until Ayala's [5] experimental proof that two species of Drosophila could cohabit on
a single prey Irakli Loladze [6] proposed that the prey consisted of a single species of alga
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and the predators were two different zooplankton species to explain their coexistent. A prey, a
specialized, and a predator species make up a three-species food web, according to Gakkhar
and Najl's observation [7].

Local stability is an important concept in many areas of study, including physics,
engineering, mathematics, and biology. For example, in control theory, local stability is used
to analyze the behavior of control systems near an equilibrium point, and to determine
whether small deviations will result in a return to the same point, or go to another point which
makes the system unstable. In ecology, local stability is used to describe the stability of
populations of species in a specific region, and how changes in the environment or
interactions with other species can affect that stability. The behavior of the prey population
before the predator's arrival could then be compared to the behavior of the population after the
predator arrives that allows researchers to better understand the impact of the predator on the
ecosystem. [4]

In population biology, the impact of the past on a system's stability is a significant issue.
Crowley-Martin response function is used because to the declining availability of prey in
nature and ecology. Population dynamic models now include time delay to represent
maturing, capturing, and other processes. Since a temporal delay could result in the
equilibrium being unstable, delay differential equations generally have substantially more
intricate dynamics than regular differential equations. The delay models have been the subject
of extensive study see [8-16].

The first way of applying a mathematical model to investigate the biological system was
put forth by Bertalanffy [17]. He emphasized that this strategy combines coordination, order,
and purposed to create three fundamental concepts for examining the biological process,
namely the trophic-level evaluation, system standpoint, and dynamic observation. Improving
knowledge of population interconnections and their dependency on both internal and external
variables is the primary goal of the population dynamics models [18].

The existence of the time delays is a significant factor in system instability, making time-
delay research is another of the most difficult problems to solve. Time delays frequently
appear in a variety of engineering projects, including biological, socioeconomic, and chemical
processes. Differential-difference equations, a subset of functional differential equations, are
used to model time delays [19]. Some researchers have explored some models with time
delayed terms in depth in a variety of biological models [20-33].

The stability of a dynamic ecology system with a predator is a complex and important area
of study in the field of ecology. In this type of system, the predator-prey interactions play a
crucial role in determining the stability of the ecosystem as a whole. A key factor in the
stability of a predator-prey system is the rate of increase of the prey population. If the prey
population grows too rapidly, the predator population may not be able to keep up, this leads to
a decline in the predator population and an increase in the prey population. On the other hand,
if the prey population grows too slowly, the predator population may decline, leading to a
decrease in the overall stability of the ecosystem. Another important factor in the stability of
predator-prey systems is the functional response of the predator which describes the
relationship between the rate of prey consumption and the density of the predator population.
Different functional responses such as the type I, type Il, and type 111 functional responses can
have a significant impact on the stability of the predator-prey system. The stability of
predator-prey systems can also be influenced by other factors such as environmental
variability, resource competition, and disease. These factors can interact with predator-prey
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interactions to create complex and nonlinear dynamics that make it difficult to predict the
stability of the system in the long term. Overall, the stability of a dynamic ecology system
with a predator is a complex and multi-faceted issue, and a comprehensive understanding of
the system requires a combination of mathematical modeling, empirical observations, and
theoretical analysis. In the context of continuous dynamical systems, a prey-predator model
may refer to a mathematical model that used to describe the behavior of a system before the
arrival of a predator. The goal of such model would be to understand the behavior of the
system'’s prey population before the arrival of the predator and how that behavior changes in
response to the predator's presence. A time delay in a system refers to a lag in the response of
the system to a change in its inputs. It occurs when the output of the system does not
immediately respond to changes in the input, but it responds after a certain amount of time
has passed. Time delays can occur in many types of systems, including physical systems,
biological systems, and engineered systems, such as control systems and communication
systems. Time delays can have a significant impact on the stability and performance of a
system. For example, in control systems, a time delay can cause instability and decrease
performance. As a result, the study of the time delay systems is an important area of research
in control theory and engineering. Techniques such as delay compensation and the use of
predictive control can be used to mitigate the effects of time delay in systems. [4], [8], [32],
[34].

The Crowley-Martin functional response is a mathematical model that describes the
relationship between the rate of consumption of a resource and the density of the consumers
exploiting that resource. The Crowley-Martin functional response is a type of type IlI
functional response which is characterized by a declining rate of consumption as the density
of consumers increases. In this model, the rate of consumption is described as a logistic
function with a saturation term that limits the rate of consumption as the density of consumers
increases. The Crowley-Martin functional response is commonly used in the field of
ecological and environmental studies to describe the interactions between species and their
environment. It is also used in the study of predator-prey interactions. It also provides a
theoretical framework for understanding how the rate of resource exploitation by predators
can influence the dynamics of prey populations.[35],[36].

In this paper, we will consider the following prey-predator system with the Crowley-
Martin functional response and time delay:

Z = .G} a1 By(t) _ a,z(t)

at (T (1 K ) (1+myx(0) (1+may (1)) (1+m3x(t))(1+m4z(t))>x(t),

ay _ e1a1px(t-1) _

ac ((1+ﬂn1X(t—T))(1+1n2y(t_T)) Cl)ﬁy(t), 0
dz _ exa,x(t—7) _

dat ((1+m3x(t—r))(1+m4z(t__[)) Cz) Z(t).

Where x(t) is the density of prey population and y(t), z(t) are the density of predators
population that feed on x(t). Also, r is the intrinsic growth rate of the prey, K is the carrying
capacity, a,, a,, my,m,,ms, my represent the capture rate, handling the x(t) and the
magnitude of interference among y(t) , z(t). S is the relative superiority of y(t). e; and e,
are the conversion rates of prey x(t). The natural death rates for species are c¢; , c,. All
parameters are positive.

2. Analysis of the equilibria:

In this section, we study the existence of equilibrium points of the system (1), we can see
that the system (1) has five possible equilibria which are listed as follows:
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(i) Vanishing equilibrium point E, = (0,0,0) and predators-free equilibrium point E; =
(K,0,0).

(ii) The one predator equilibrium point E, = (x*,y* 0) exists in the Int RZ of xy-plane if
there is a positive solution to the following equations:

a *
rx* + 1fy =rK

* H

(22)
anle - ¢, (2b)
Where G* = (1 + myx*)(1 + myy™).
: vk _ (raif-cim)x" — ¢
From equation (2b), we get: y* = e (Lemx) (3a)
y* is positive provided 0 < m < x* (3b)
141 —t1 1
By substituting y* in equation (2a), we can get the following polynomial equation:

A x™ + A, x% + Asx* + 4, =0 (4)
Where Al =e mym,r, A, =e myr(1—myk),
Az =K(eia, B —egmyr — cymy), Ay = —c1 k

By Descarte’s Rule of sign [37], [38] equation (4) has a unique positive root provided that

A, >00rA; <0. (5)

(iii) The equilibrium point E; = (X, 0,z ) exists in the Int RZ of xz-plane, where;

__(ezaZ—Cng)f—Cz Cy

— is positive provided 0 < <Xx. (6)
czmy (1+m3x) e, ay — c; M3
And x is a positive root of polynomial equation:
B,x3+ B,x* + B;x + B, = 0. (7)
Where; B, =e,msmyr, B, =e,mur(1— m3K),
B; =K (e,a, —c, mg —e,mur), B, = —c,K
Which existsif B, >00rB; <0. (8)

(iv) The positive equilibrium point E, = (,9,2) exists in the interior of R? if there is a
positive solution to the non-linear system:

R\ _ wmpy  axz
r(1-2) =25 ()
LS = ¢ (9)
L%i_ . (9c)

H
Where 6= (1+ mzx)(1+my9),and H= (1+m3x)(1+m,2).
From equations (9b) and (9c), we get:

~ (eqa; f—cimq)X—cq _(92a2—52m3)f—c

— and 2 —2 | respectively.
camy (14+4mqyx) c;my(1+mzXx)
By substituting ¥ and Z in equation (9a), we get a polynomial equation: () = 0.
Where q(x) = C;x* + C,x3 + C3x? + Cyx + Cs, (10)
Ci=reemmymsm, C,=re e;mymug(my +mg—Kmymsg)

C;=re;e;mymy(1l — Kmy — Kmy) + Ke,mgmyu(ega, f—cymy)
+Keymym,(e;a; —cyms) ,
Co =Keymy(ega;f —cymy —cymg) + Keymy(epa, — camg —cymy)
—-rKeegemym,, C;=—K(cie;my + c;emy)
Now according to the Descarte’s Rule of sign, the above equation has a unique positive root
such that one set of the following sets of conditions:
c,>0,C0,<0
C,>0,C05>0 (11)
€;<0,C0,<0
So it exists uniquely in the Int R3 if the following conditions hold:
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2 <% and 0 < —2—— <& (12)

0< ————
€z az — ;M3 eta;B-c1my

3. Local stability and Hopf bifurcation:

In this section, we investigate the local stability at each of feasible equilibrium point of the
system (1) by using the corresponding characteristic equations.

Theorem 3.1: For system (1) we have the following:
(@) The equilibrium point E, = (0,0,0) is a saddle point.
(b) The predators-free equilibrium point E; = (K, 0,0) is locally asymptotically stable if

. Cq C2
K < min {e1a1ﬁ—m1C1’ ezaz—m302}’ (131)
re<? (13.2)
Proof: (a): The Jacobian matrix of the equilibrium point E, = (0,0,0) is:
r 0 0
Joy(E)) =0 —c4 O ] (14)
0 0 _Cz

The eigenvalues of (14)are A, =r >0, A, =—¢; <0, and A3 =—c, <0.

Thus, the equilibrium point E, = (0,0,0) is a saddle point with locally stable manifold in
the yz-plane and with locally unstable manifold in the x-direction.
(b) The Jacobian matrix of the equilibrium point E; = (K, 0,0) is:

—'re_AT —alﬁk —azk ‘|
1+mqk 1+m3k
e Bk
Joy(E1) = | 0 11‘1711,( -G 0 |
0 0 e LA

1+m2k 2

The characteristic equation of predators-free equilibrium point E; = (K, 0,0) is:

- _ aupk _ 2@k _
(L+re )(x 1+m1K+c1)(,1 1+mSKJrcz)_o (15)

To find the value of A that satisfies A + re™** = 0
let A = w;, SO we have:
r — w sin(wt) + iw cos(wt) = M(w) +iV(w) =0 (16)
M(w) =7 — wsin(wt) and V(w) = w cos(wrt).
From equation (16), we conclude that: wy =0, w,4q = g +nm fornel.
Then the root of V(w) are all real numbers.
By using equation (3.10) in[1, page 244], from the relation VM (w) , we have

d‘;ij’”) M(w,) = (Cos(wnr) - wnrsin(a)nr))(r — wnsin(wnr)) @an
rn> 0 if n=20

- {(—sin(mr) — wy,, T cos(nm)) (r — w, cos(nrm)) if n+#0 (18)

%:5(2n+1)2—r(—1)n(2n+1)§ (19)

This inequality r (2n +1) < = (2n+1)* holds if rz <~.

That is equation (19) is positive if rt < g .

A, has a negative real part if r7 < g , also from equation (15), 4, , 15 has negative real part if
K < min { t 2 }

)
eja; f—-mycy €202 —M3Cy

To study the local stability of the equilibrium point E, = (x*, y*,0), we have to evaluate the
Jacobian matrix at the equilibrium point E, = (x*, y*, 0) which is given by:
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cemqyy” —-rx* e_/h c1 —ayx*
e1(1+mqx*) K e1(1+myy*) 1+max*
1y’ -1t “MaC1 AT
= — e ——€ 0
Jioy(Ez) Arm)x rmay)
ey x*
0 0 22— ¢,
(1+m3x*)

Then, we have the characteristic equation of J,) (E>):

_ ey Ay X" )( _ cimyy” rx- _M>< myc1y” _,11>
(A (1+m3x*)+c2 ll el(l+m1x*)+ K ¢ /1+(1+m2y*)e

n C12 y* e_/h- —~0
er x* (1 +myx*)(1+ myy*)
Further simplification yields the following:

Alz%—cz and 2Z2+PA+(Q+RA)e ™ +Se =0
(20)
—cgmyy” 1 * iy rx* Cimyy”

Where P = e (1+myx*) Q= (; - mimyy )elz a; Bx* ' R= K (1+myy*) '’ and
S = camyrx*y*

K (1+myy*)
When =0, equation (20) reduces to: AP+(P+R)A+Q+S=0
(21)

According to Routh-Hurwitz criterion, equation (21) has all negative roots if P + R > 0 and
Q+S>0.

Hence, for 7 =0, the prey-predators one equilibrium point E, = (x*,y*,0) is locally
asymptotically stable whenever the following conditions are satisfied:

ey ay x*
(Lemar) < ¢y (22a)
mq m;
e (1+mqx*) < 1+myy* (22b)
cZmyy* rx*
Fafr  K(Atmy) (22c)

Now we can discuss the system in presence of delay around E, = (x* y" 0).
Let A(t) = M(7) £ iw(t); (w > 0) but the change of stability around E, = (x*,y*,0) will
occur for M(t) = 0. Hence it is found that the position of stability for A(t) = tiw(r)
if iw (w > 0) is a solution of equilibrium point equation (21) separating real and imaginary
parts:

Q cos(wt) + Rw sin(wt) + S cos( 2wt) = w? (23a)
Q sin(wt) — Rw cos(wt ) + Ssin(Rwt) = Pw (23b)
Solving (23a) and (23b) we get:

Rw3+w (PQ —RS)
o1 P? 0?57 (243)

Q0S+w?2(Q-PR)

T PTar sz | (24b)
squaring and adding (24a) and (24a) we get the polynomial equation:

w® + P, w® + P, w* + P w? + P, = 0. (25)
Where P, = 2P? —R? , p, = P* + 2R?>S — Q% — P?R? —2§?% ,

P; = 4PQRS — 2Q?S — 2P2S% — P2(Q? —R?S% ,and P, =S?(S5% —Q?)

Let f(w) = w® + Pyw® + P,w* + P;w? + P, and h = w? then equation (25) can be written
as:

sin(wt) =

cos (w1) =

h* + PLh® + P,h? + P;h+ P, =0 (26)
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2

If _mer¥ (xl - mym, y*) —a (27)

K (1+myy*) * e?a, fx*’

then equation (26) has at least one positive root, without loss of generality we assume that
equation (26) with condition (27) has three positive roots h; , h, , hs then:

Wy = \/h_k (k=1,2,3). From equation (24b), we get the corresponding value of time delay
71 > 0 such that equation (21) has a pair of purely imaginary roots +wj

j _ 1 _1(QS+wi(Q-PR) 2jm -
T, = o cos ( P ) + o , J=012,.. (28)
Let 75 be the smallest positive value of 7 for = 1,2,3 , wg = wy,.
Now differentiating both sides of equation (21) we get:

da .y da dA  _y da 2T _
(22+P) 2 —(Q+R1)e™ (A+TE)+R L eh - zs(/1+r;) e~24 =

Then, we obtain:

dA A(Q+ RA + 2Se™™ Je™™
dt ~ P+21—1(Q+RA) e + Re T —2Sre 24
2N (P+21)e™ R—1(Q+RA) - 2Ste™
(E) T 2(Q TRAT 25¢ %) T T A(Q + RA+ 25¢-7) (29)
For A = twgi

() =

w(Pcos (whTe)—2wgsin (w§Ty))(2Ssin (whTe) —Rwg)+(Psin (whTe)+2wgcos (wyTo))(Q+2Scos (whTo))wh+iLy

. 2 Z
w§?(25-sin (whTo)—Rwy) +w’{,2(Q+25cos (wgro))
(R—Qto—25toc0s (whT())(2Ssin (wgTo)—RwE) wh+ws(2STosin (whTe) —Rw§To)(Q+2Scos (whTo))+il,

_.|_

wy?(25-sin (w’{,ro)—RwS)2+w32(Q+25cos (wgto))z
Where;

Ly = —w}‘;(Q + 2Scos (wéto))(Pcos (w§Tp) — 2wgsin (a)(’STO))
+wy(2Ssin (wgTy) — Ra);;)(Psin (wgTo) + 2wgcos (a)(’gro))

L, = —wS(Q + 2Scos (a)STO))(R — Qty — 2S1HCO0S (a)(’gro))
+wy(2Ssin (wyTe) — Rwg) (2STosin (wqgTy) — (WoTo)

-1
d(Re(A(zo)))
dt
=T [wg (2PSsin (wiTy)cos (wyTy) — PRwycos (wity) — 4Swhsin? (wity)
0
+ 2Rwi?sin (whty) + PQsin (wity) + 2PSsin (w§t,)cos (whTy)
+ 2Qwpcos (wyTy) + 4Swhcos? (wyTy) + 2RSsin (wyTy) — R2w}
— 2QStysin (wyTy) + RQwiTy — 4S21ysin (wyTy)cos (whty)
+ 2RSwyTocos (whty) + 2QSTysin (wyTy) + 4S%1ysin (whTy)cos (wiTy)
— RQuwyTy—2RSwyTHCOS (wgro))]

Where; Ny = w§?(2S — sin (w§te) — Rwy)? + w§?(Q + 2Scos (wéro))z >0
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(d(Re(mo))))‘l

dt

w*
= N—O [SPsin (2wjty) — PRwjcos (whTy) — 4Swisin? (whTy)
0
+ 4Sw}cos (wiTy) + 2Rwi?sin (wiTy) + PQsin (w§ty) + SPsin (2wyTy)
+ 2wcos (wyTy) + 2SRsin (wyTy) — 2QSTesin (whTy) — 252Tosin (2wTy)
+ 2RSwyTocos (wyTy)
+ 2QS7,sin (wyTy)+25%7sin (2wyTy) — 2RSwTcos (whty) — R?wj]
_ COB *7 x7 *3 %
= 2N0(w34+P2w32—52) [8w0 + 6P, wy +4P, w,” + 2P3w0]
_ wg li *
T 2N, (wp*+ P2wy?- 52) f'(wo)
Thus, we get the following results:

Theorem 3.2: Suppose that (22a), (22b) and (22c) hold. If equation (26) has no positive roots,
then the two species equilibrium point E, = (x*,y*, 0) is locally asymptotically stable for all
T=>0.

Theorem 3.3: Suppose that (22a) and (22b) hold.
mimy y* my T X" 1 x : f' (wg)
I ef a; px* K c (1+myy*) ( Mz y ) ef as B x* and_sign (w64+P2 wy? - 52 )

positive, then the two species equilibrium point E, = (x*,¥*,0) is locally asymptotically
stable for T € (0, 17).
And the system(1) undergoes a Hopf-bifurcation at equilibrium point E, = (x*,y*,0) when
T = 1,.

Theorem 3.4: The two species equilibrium point E; = (x,0,Zz) of the system (1) is locally
asymptotically stable for all t > 0 if the following conditions are satisfied

e aq ﬂ X
Tmlf < (303.)
ma my
e; (1+mzx ) < 1+muz’ (BOb)
c2myz X
e2a,x < k(1+myz)’ (3OC)
and the equation h* + g, h?> + g, h®> + gsh+q, = 0 (31)

has no positive root.
Where q; = 2P?> —R?, q, = P* + 2R?S — Q% — P?R? —2§?
qs = 4PQRS — 2Q?S —2P?S? — P2Q? — R?S? ,q, =S*(S? —Q?)

= —cpm3zZ A_ (1 _ -\ ¢z 5 _TX | CmyZ =
P = e, (1+ms x) ! Q_(f m3m4z)e22a29? ,and R = K +(1+m4z')’ S=
ComyrX Z
K (1+muz)’
Theorem 3.5: Suppose that (30a) and (30b) hold.

M3 My Z myrx 1 _ 1 . g’ (@wy) -
It e2a, ¥ K cz(1+myZz) < (f MM Z) efa,x and sign (504 +P2@,° —52 ) positive, then

the two species equilibrium point E; = (x, 0,z ) of the system (1) is locally asymptotically
stable for T € (0, 7).

And the system (1) undergoes a Hopf-bifurcation at equilibrium point E; = (X, 0,z ) when
T =T,.
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To study the local stability of positive equilibrium point E, = (X,7y,2Z) we have to find the
Jacobian matrix J(t) of x(t),y(t),z(t),with variable t at the equilibrium point E, =

%,9.2):

cim.y com3Z s T —C1 —Cy
e1(1+mq%) ex(1+m3Xx) k e1(1+my¥) ex(1+myz2)
1y -At —camzy A
= —=e 0
](t) (Es) (1+mq %)% 1+myJ
Czé AT 0 —sz42 AT
~o —e
(1+mz2)%2 14my2

Now let u(t) = x(t) +x, v(t) =y(t) + 3, w(t) = z(t) + 2, then the linearization of
system (1) become:

du(t) cim,y Cco,ms32 ) o) Cy

dt (91(1 + m,X) + e,(1+ m3 A) u(® = xu(t R e;(1+m,y) v(t) e;(1+my,2
dv(t) ¢

dt ~ (1+mR)% u(t = )_ (t_T)
dw(t) C22 Cy

a rm Ay““‘”‘mw")-

We choose the following Lyapunov-krosovskii functional candidate as following:
V(t) = u3(t) + v2(t) + wi(t) + [ uP(s)ds + [ vi(s)ds + [ w3(s)ds
Calculating the derivative of V(t) along the trajectories then we get:
O = 2u(t) 22 + 20() B2 + 2w (1) 2+ wP(6) — u(t — 1) + v?(8) — v (t — 7)
+w2(t) — Wz(t - 1)

av(e) _ cimiy CamsZ u> —
at 2 (e1(1+m1x)x + e2(1+m3x)) (t) x u(t)u(t T) e (1+m )

—2—=2 _u()w(t) + 2 %v(t)u(t —7) -2 AP ey VOVt = T)

e, (1+m 2) (1+
(1+m Y w(u(t —7) - W(t)W(t -17)+ uz(t) —u(t — 1) + v23(t)
—v2(t — 1) + w2(t) — w?(t — T)

O = 2407 (t) - 2Bu(t)u(t — 1) — 2Cu(t)v(t) — 2Du(t)w(t) + 2Fv()u(t — )

—2Gv()v(t — 1) + 2HW(u(t — 1) — 2Mw(t)w(t — 7) + u?(t) — u?(t — 1) + v2(t)
—v2(t — 1) + w3 (t) — wi(t — 1)

————u(t)v(t)

C2m4_Z

Where A = —2m? Cms?  p_2s oG p=—__ 2
61(1+m1£)£ 62(1+m356'\) ’ k ! 61(1+m25}) ! 32(1+m42) !
F — C137 — Clmly _ Czé — C2m42
(1+m D)%’ 1+m,y ’ T (A+maR)R 1+my2
av(t) 5
9 (2A + Du“(t) — 2Bu(®)u(t — 7) — 2cu(t)v(t) — 2Du(t)w(t) + 2Fv(t)u(t — 1)
—2Gv(t)v(t — 1) + 2Hw(u(t — 1) — 2Mw(t)w(t — 7) — u?(t — 1)
+ v2(t) — v2(t — 1) + W?%(t) — w?(t —7T)
T8 = PRPT; where P = [u(t), v(t),w(t), u(t — 7), v(t — 7),w(t — 7)] and

2A+1 -C -D —-B 0 0 7
—C 1 0 F -G 0
-D 0 1 H 0 —M

R=l'"p F H -1 0 o
0 -G 0 0 -1 0
0 0 -M 0 0 —1.
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If R <0, then the positive equilibrium point E, = (X,9,2) is locally asymptotically stable
[4].

4. Global stability of equilibria
We will discuss the global stability of equilibria in this section by constructing a suitable
Lyapunov function and applying LaSalle's invariance principle.

Theorem 4.1 : Assume that the predators-free equilibrium point E; = (K, 0,0) of the system
(1) is locally asymptotically stable and let the following condition hold.

K < min { ¢, G(xy) c; H(xz) } (32)

a B’ ez as
where G(x, y) =(1+myx)(1+myy)and H(x,z) = (1+mgx) (1+myz). Then E;
is globally asymptotically stable.

Proof: Consider a suitable function: V; (x,y,z) = (x —K—KlIn (%) ) + eiy + eiz (33)

Here, V;(x, v, z) is a positive definite function V(x,y,z) € R3 . Then differentiating equation
(33) with respect to t, we get:

dVl_(t)= (1_5)(rx(1_x(t—‘r))_a1ﬁxy _ azxz)_l_i(elalﬁx(t—r)_cl)y

dt K Gxy)  H(xz) e Gr (x,y)
1 [ eya; x(t—-1)
+2( H; (x,z) —C )Z
Where G.(x,y)= (1+mx(t—1) (1+myy(t—1)) and

Ho(x,2) = (1+max(t —0)(1+myz(t —1))
v _ T _ 3 B a4 fxy  azxz G BKy | aKz a; By x(t-1)
T = (x K ) ( K X(t T)) G(x,y) H(x,2) G(x,y) H(x,z) Gr (x,y)
azx(t-1) ¢ C2

Hy (x,2) e ez

y x(s) zx(s)
Andfoer(x y,Z)— a, f ft T md&' + a, ft T m

avy, (t) _ y x(t—T) xz z x(t—1)
at 1'3 (G(xy) Gy (x,y)) ta; (H(x,z) H; (x,z))

Let Va(x,y,z)=V,(x,y,z)+ V,(x,y,2) (34)

—Z

Here, V5(x,y,z) is a positive definite function V(x,y,z) € R . Then differentiating
equation (34) with respect to t, we get:

avs(t) _ 7 _ _ _ a1 Bxy  axxz | afKy | a;Kz | aByx(t-1)
22 = L (x—K) (K=x(t—1)) 6xy)  H&xD T 6@y T HOz) Gr (xy)
N azx(t-1) o ¢ n a1 fxy a1 Byx(t—1) axxz  axzx(t-1)
H‘r (x,2) ey e T y) Gr(x.y) H(x.2) H(x.2)
_-r _ _ aq ﬁ K C1 az K — C_z
= (x—K)(x(t—1) - K)+(G(xy) el)y"'(H(x.z) ez)z<0

Under condition (32), then it is globally asymptotically stable.
Theorem 4.2 : Assume that the prey-predators one equilibrium point E, = (x*,y*, 0) of the
system (1) is locally asymptotically stable in the Int R3 and if the following conditions hold
G (Gxy)-G* )y
>
v (Gxy)? 1. (35)

ey, ay x* < c
H(x,2) 2

(36)
then E, is globally asymptotically stable.
Proof: We construct the suitable Lyapunov function as follows:

Vo(x,y,z) =x—x" —x"In (x) + o (y y* —y*In (y)) + o % (37)
Here, V, (x,y,z) is a positive definite function V(x,y,z) € R3. Then differentiating
equation (37) with respect to t, we get:
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2O (1-2) ((1-250) w1 _ me)

dt K G(x,y) H(x,z)
1 . y_* e1aq B x(t—1) . 1 (epap x(t-71)
+e1 (1 y ) ( G (xy) Cl)y + e, ( Hy (x,2) CZ)Z
avy(t) . x_* _x(t-DY " . x_* " . x_* _afxy  axxz
S = (=) (e (1= e (1) 2 (1-2) - 5 i)
1 _ y_* e ay Bx(t-1) 1 (eyarx(t-1)
+ ey (1 y ) ( G (x,y) 1 ) y + e, ( Gr (x,2) €2 ) z
T (x—x* b —1)) — et (1= (1 %) @By
—K(x X )(K x(t r)) rX (1 x)(l K)+ o
_alﬁxy _ azxz _x* a1 Bx*y*  a1Bx*y . a,x*z  aiByx(t-1)
G(xy) H(x,z) xG* G(xy) = H(xz) Gr(x,y)
_aBxy  a By’ x(t-1) + a Bx'y” azx(t-1)
G* Gy (x,y) G* H (x,2) ez
Consider Vs (x,y,2) = a, B [, VAN 36 A ( & K(s)y ) ds
>N VP t—r \G@@ysny 6 P Xy G(x(5),y(5)

x(s) z

T Bz & (38)

+a2 ftt_

Here, Vs(x,y,z) is a positive definite function V(x,y,z) € R3. Then differentiating
equation (38) with respect to t, we get:

dvs () _ xy Yy x(t-1) x*y* G(x,y) x(t-7) Xz azx(t—7)
ac a1 'B [G(x,y) G (x,y) + G* ( x Gz (x,y) )] H(x,2) Hy (x,2)
Let Vi(x,v,2z)=V,(x,y,2) + Vs (x,y, 2). (39)

Then differentiating equation (39) with respect to t:
ave() _ l(x—x*)(K—x(t—T)) oyt (1 _x_) (1 _x_) _l_alﬁx Y. _aiBxy axxz

dt K x K G* G(x,y) H(x,z)
_ X Bx'yt  aBxy  axx'z  aByx(t-1) @ Bx'y a By x(t-1) a1 fx"y”
xG* G(x,y) H(x,z) Gz (x,y) G* Gz (x,y) G*
azzx(t—t) ¢z + aiBxy o Byx(t-1) a1 Bx*y* In (G(x,y) x(t—‘r)) a;xz  azzx(t—7)
Hy (x,2) ez G(x.y) Gz (x.y) G* x Gr (x,y) H(x,z) Hz (x,2)
T " « x* x*
== (x—x")K—-x(t—1)) —1rx (1 " ) (1 K)

_alﬁx*y* G*x(t—r)_ _ G* x(t-7) _alﬁx*y* x_*_ _ x_*
G <x*ar(x,y) 1=In (x*af(x,y))> G (x 1=In (x))

SR () SR -1 ()

1 feya,x*

+;(H(x,z) _CZ)Z
:%(x—x*)(x(t—T)—K)_rX* (1—9(1_9(*)

K

o Bx*y* [ G*x(t-1) 1 G* x(t-71) _a Bx*y* x_* 4 x_*
G* <x* Gz (x,y) 1 In (x* Gt (x,y))) G* ( x 1 In ( X ))
_uBxy [y G y)-G)ExY) 4y (GxY) 1 (e2a2X"
1—1In + -—

G v (6(xy)° G* G* e, \ H(x,2)
condition (35) and (36), then it is globally asymptotically stable.

—cz)z<0 under

Theorem 4.3 : Assume that the two spices equilibrium point E; = (x,0,z ) of the system (1)

is locally asymptotically stable in the Int R3 and if the following conditions hold
zH (H(x,z) —H)

Z (H(x,2))? = 1 (40)
e ag B X
(1+m3 %) < G (41)

where H = (1 + m3 x)(1 + m, 2), then E; is globally asymptotically stable.
The proof is similar to the proof of Theorem (4.2) so it is omitted.
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Theorem 4.4 : Suppose that the positive equilibrium point E, = (%, 9, 2) is locally
asymptotically stable in the Int R3 then it is globally asymptotically stable if the following
conditions hold

yG6 (Gxy)-G)
Yo ") S

¥ (G(x,))? L. (42)
zH(H(x,2)-H)

PG = L (43)

where; 6 = (1+m; %) (1+my9)and H = (1 + my %) (1 +m, 2).

Proof: We construct the suitable Lyapunov function as follows:

Viol,7,2) = (x = % = 2in (f‘z))+i<y—?—ﬁln (§)>+é(z—2—2ln ®)

(44)
Here, Vio (x,v,2) is a positive definite function V(x,y,z) € R3. Then differentiating
equation (44) with respect to t, we get:

S =(-D) e (-9)E s (-0)a

a0 (1512 st

r(1-3) (e o) L fameen
a0~ (8 o152 2 (1 E) (1) -

- #( Gy)  H@o)
t— t—
T ([~
)

=—(x—x)(K x(t—r))—rx(l——( —) + B3I | aptz

G H

_Xa,BRY  Ra X2 a1 fxy axxz a1 BRy a, Xz a, By x(t-7)
xG x H G(x,y) H(x,z) G(x,y) H(x,z) Gy (x,y)
a Xy a; By x(t—-71) + ai Xy + a,zx(t-17) axXz a,2x(t-t)  a X2z
G Gy (%) G Hy (x,2) H Hy (x,2) H

Now consider

_ t x(s)y _ Xy %y G x(s)y
Vi1 (6,y,2) = a1 B ft—r (G(x(s),y(s)) G ¢ In (29 G(x(s),y(s)))) ds

t x(s) z X2 X2 Hx(s) z
+ay f,_, (H(x(s),z(s)) —F-@h (2 2 H(x(s),z(s)))) ds (45)
Then differentiating equation (45) with respect to t:

avi (t) _aiBxy aiByx(t-1)  aif 3?)71 (G(XJ’) x(f—T))

dt G(x,y) Gy (x,) G X Gr (x,y)
Xz azz x(t-1)  a,x2 1 (H(x,z)x(t—r))
H(x,z) Hy (x,2) H x Hy (x,z)
Consider V(x,y,z) = Vio(x,y,2) + Vi1(x,y, 2). (46)

By differentiating equation (46) with respect to t, we get:

PO =La-)K—xt-1)—r2(1-3)(1-T) 4 2L 4 2222
_falﬁﬁﬁ_ﬁazfi_alﬁxy_azxz a Xy a, Xz a, By x(t-7)

T)

xG xH G(x,y) H(x,z) G(x,y) H(x,z) G (%)
a,BXy aByx(t-1) a1 BXY a,zx(t-1) a1Xz a, 2 x(t—1)
— _ — _ + S SR
G G (x,y) G H; (x,z) H H; (x,2z)
n a, X2z a,Bxy o Byx(t-t) a1 BXy (G(x,y) x(t—‘r)) a,xz
¢ G(xy) Gr () ¢ X G (%) H(x.z)
_Gpzx(t-T) | a4 Xz H(x,z) x(t—7) _ _ _ _ _ % _ %
Hy (x,2) + H In ( x Hy (x,2) ) (x x) (K x(t T)) r¥ (1 ) (1 )

a1 By [ Gx(t-1) G x(t-1) a, 22 [ Hx(t-1) H x(t-1)
- (9? Gr (%) —1-In (3? Gr (x,y))) T m <3? Hy (x,2) —1-In (3? H; (x,z)))
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L8 1 (9) -5 (E 1- ()

Gy 4 _ Gy _ BRIy L (Y
<9G(x,y) 1 ln(ya(x,y))> <;v I=In (y)>
a, %2 Hz Hz a, %2
+ H <2H(x,z)_1_ln(2H(x,z))>_ H

r x

(x —J?)(x(t—r)—K)—rp?(l——

X

a Ry [ Gx(t-1) G x(t-1) a, %z ( Hx(t-7) Hx(t-1)
T ¢ (3? (x,y)_l_ln(J?GT(xy))>_ A <9?Hr(x,z)_1_1n(3?HT(x,z))>

LXy (X x a, X2z (x x

(r —1“(;)) 7 (“1 1“(;))

G
alﬁw( y(c(x,w—é)c(x,y)_1_ln(a<x,y)) _ap23
G

N
N— &>
T
T N> | N
I
x| ® —_
|
—
=
N
NI N
—
N——

¥ (G(x,¥))? G

_ a, X2 (Hz(H(xz) -H) H(x,z2) —1—-1n (H(Jﬁ,Z))) _ a X2
H
(

G

2 (H(x,z))? H q

Then < 0 if condition (42) and (43) are holds. Then it is globally asymptotically stable.

5.1 Numerical simulation

In order to illustrate the theoretical results for system (1), we choose the parameters as
follows:
r=14,K=30, a4 =06,=085,m; =076, my, =2.5,a, =045, m; = 0.875,

m, = 2.5 , e, =03 , c; =0.2 , e, =04, c, =02, 7=0.6

(47)

Then K < min { , =2 } and rt<Z. Then the predators-free
€1a15 mic;  ez0; —MzgC 2

equilibrium point E;= (30,0,0) is locally asymptotically stable. In Figl, we have shown the
phase portrait and time series of the system (1).

0 20 40 60 80 100 120 140 160 180 200
t

1 - 0 20 40 60 80 100 120 140 160 180 200
t

4(

10 0 20 40 60 80 100 120 140 160 180 200
y 0 0
2 2 t

Figurel: Trajectories of the s&étem (1) approaches asymptotically to the predators-free
equilibriumpoint
E;=(30,0,0) for the given data in equation (47) with initial point (1,3,5).

For the set value of parameters in equation (47) with change m; = 0.3, ¢; = 0.04 and fixed
the value of other parameters, we can see that the system (1) has a prey-predator one
equilibrium point E, = (29.6,4.184,0) which is locally asymptotically stable when 0 < 7 <
7, = 1.122 and it is unstable if T > 7, and it is undergoes a Hobf-bifurcation at E, with t =
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7o - In Fig2, we have shown the phase portrait and time series of the system (1), respectively.
Fig3 shows the periodic solution of E, with T = 1.13.

50

L L L L L L L L L J
0 20 40 60 80 100 120 140 160 180 20

0 20 40 60 80 100 120 140 160 180 20

0 20 40 60 80 100 120 140 160 180 20

5
“h e
£ —h
G so-u\/» A
T
22 -
0
iy
0f :
0 | | | | | | | | |

0 2 4 60 8 10 120 40 160 180 20
Time
Figure 2: Trajectories of the system (1) approaches asymptotically to the prey-predator one
equilibrium point E, with initial value (7,2,1) and T = 1.05.
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Figure 3: Periodic solution of E, with 7 = 1.13
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Also, for the set of parameters in equation (47) with change a; = 0.2, m; = 0.7,
a, =0.85,m3; =0.3,e; =0.03,c; = 0.4 and fixed the value of other parameters,
the system (1) has two-species equilibrium point E; = (29.4,0,1.636) which is locally
asymptotically stable when 0 < 7 < t; = 1.125 and unstable if T > 7.1t is undergoes a
Hopf-bifurcation at E5; with T = t . In Fig4, we have shown the phase portrait and time series
respectively of system (1). Fig5 shows the periodic solution of E; with T = 1.14.

0 20 40 60 80 100 120 140 160 180 200

" L L n " L L
0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

Populations

0 I [ I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

Time
Figure 4: Trajectories approaches asymptotically to the two-species equilibrium point E; =
(29.4,0,1.636 with initial value (4,2,6) and T = 0.95.
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t
1
2 10 :
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Figure 5: Periodic solution for the equilibrium point E;with T = 1.14.
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Finally, for the set of parameters in equation (47) with change a;, = 0.4, m; = 0.02, m; =
0.02, e; = 0.8, c; = 0.1 and fixed the value of other parameters, the system (1) has a
positive equilibrium point E, = (25.74,18.09,5.717 ) and satisfies the conditions that are
indicated in equations (9), (11) and (12). It is asymptotically stable for 0 <7 <7, = 1.255
and it is unstable for T > 1.255, it is undergoes a Hopf-bifurcation at E, with = = 7,,. In Fig6,
we have shown the phase portrait and time series respectively of the system (1). Fig7 shows
the periodic solution of E, with T = 1.26.

0 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500
t
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0 50 100 150 200 250 300 350 400 450 500
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0 50 100 150 200 250 300 350 400 450 500

Time
Figure 6: Trajectories of the system (1) approaches asymptotically to positive equilibrium
point E, with 7 = 0.6
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Figure 7: Periodic solution for the positive equilibrium point, E,with T = 1.26.
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Conclusion:

A prey-predator model with time delay has been taken into consideration in this paper.
Under some conditions, the existence and local stability have been derived. In addition, we
see that when the time delay crosses some key levels, it can turn the stable equilibrium into an
unstable one or even produce a Hopf bifurcation. It is shown that in numerical simulation.
After that, we use an appropriate Lyapunov function and LaSalle's invariance principle to
analyze the global stability of the equilibrium points under some sufficient conditions.
Finally, numerical simulations of the system (1) are presented to illustrate our theoretical
results.
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