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Abstract: 

       In this paper, the instability of the Carreau fluid was discussed in the 

asymmetric channel with a porous medium in the presence of a changing magnetic 

field and rotation. The Carreau fluid behaves like a non-Newtonian fluid, where it 

was found that the rotation has an effect on the stability of the fluid. Numerical 

methods are used to solve the equations, such as the perturbation method. 

Assumptions are used to analyze the flow. The effect of Hartmann number (Ha), 

Darcy number (Da), material fluid (We), magnetic field (β), capacitance ratio (∅) 

and rotation are calculated(Ω)Numerical results were calculated using 

MATHEMATICA program 

 

Keywords: peristaltic flow, rotation, magnetic field, Carreau. 

 

في قناة غير متماثلة بوسط   Carreauتأثير المجال المغناطيسي والدوران على التدفق التمعجي لسائل 
 مسامي 

   2، لقاء زكي1حمزه رشيد
 العراق د،  ، بغداات، كلية التربية، الجامعة المستنصريةقسم الرياضي1

 جامعه بغداد,كلية العلوم, قسم الرياضيات2
 

 الخلاصة 
في  وسط مسامي    ذات قناة غير متماثلة  الفي    Carreau  عدم استقرار مائع  مناقشة    تمفي هذا البحث          

حيث وجد ان للدوران    نيوتني غير  مثل مائع    Carreau  يتصرف مائع   وجود مجال مغناطيسي متغير ودوران
استحدام   وتم  الاضطراب  طريقة  مثل  المعادلات  لحل  عددية  طرق  استخدام  يتم  المائع  استقرار  على  تاثير 

التدفق   لتحليل  منافتراضات  كل  تاثير  حساب  هارتمان    وتم  دارسي  و  (Ha)رقم  المادة    و (Da)رقم  سائل 
(We) المغناطيسي    و )و  (β)المجال  السعة  باستخدام     (Ω)الدوران  و (  ∅نسبة  العددية  النتائج  حساب  تم 
   MATHEMATICAبرنامج 

 

Introduction 

      Peristalsis is well recognized technique in which a gradual wave of contraction or 

expansion flows along the channel walls, causing the contents of the channel to shift. This 

phenomenon generally accurses in a number of biological, medicinal, and technical 

applications; similar to urinate transfer from kidney to bladder through ureter, lymphatic 

vessel transport, heart-lung machine, among other things. Many works on peristaltic flow in 

              ISSN: 0067-2904 
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various geometries shown that the non-Newtonian behavior and the non-Newtonian fluid 

flows have many applications in engineering and medicine, have examined the peristaltic 

flows of Newtonian and non-Newtonian fluids in symmetric and asymmetric channels. In few 

other papers, Nadeem and Akbar [1] So Carreau is one of the non-Newtonian fluid models 

used for our research. applications of peristalsis have been attracting the interests of 

researchers after the seminal work of Latham [2]. The studies of non-Newtonian fluids are not 

only important but sometimes essential due to their excessive presence in universe. Therefore, 

the analysis of different non-Newtonian fluid flows has received a lot of attention from 

researchers. Particularly peristaltic transport of these fluids was discussed in Ref. [3-4-5] 

Although most prior studies of peristaltic motion have concentrate on Newtonian fluids, there 

are furthermore studies comprising non-Newtonian fluids, such that the shear stress might 

rely on the shear rate(the rapport between shear rate and shear stress isn't linear), each shear 

stress and shear rate is also time subordinate and also the fluid might have viscous 

additionally as resilient characteristics [6] Several scholars in particular biological problems 

dealing with conductive fluids are involved in the effect of magnetic field on fluid flow, 

which is denoted by Magneto hydrodynamics (MHD) as cancer therapy, blood pumping 

machines, polymer production, and metallurgy. Sensors, magnetic drug, and engineering can 

all benefit from the MHD. Several studies have been steered on MHD peristaltic transport for 

various fluid models and states due to its many uses [7-8-9-10] Rotation has a fixed center 

point around which everything else revolves in a circle. studied the effects of rotation and 

magnetic field on nonlinear peristaltic flow of second-order fluid in an asymmetric channel 

through a porous medium. Hayat et al. [11-12] discussed the Effects of an endoscope and 

rotation on peristaltic flow in a tube with long wavelength [13] 

 

Mathematical Formulation for Asymmetric Flow. 

     Consider the flow of a Carreau Asymmetric fluid in two dimensions., canal has thickness 

(E + E′). The flow is created by an unlimited sinusoidal wave line traveling forth with 

constant velocity c along on the canal’s walls. Asymmetric canals are created by altering 

wave amplitudes, phase angles, and canal thickness. The geometries of the walls are modeled 

as: 

h1(x,t)=E-r1 sin[
2π

λ
(x − ct)] upper wall                                                                                 (1) 

h2(x,t)=−E′-r2 sin[
2π

λ
(x − ct) + ∅] lower wall                                                                      (2) 

 

      where (r1) and (r2) denote the amplitudes of the wave, (E) and (E′) represents the width of 

the channel, (λ) designates the wavelength, (X) represents the direction of the propagation of 

wave and (t) stands for the time. The phase difference (∅ ) fluctuates within the range (0 ≤ ∅ 

≤ 𝜋)  in which (∅ = 0) corresponds to asymmetric channel with waves out of phase and (∅ = 

𝜋) stands for the waves in phase. Further (r1), (r2), (E), (E′), and (∅) satisfy the condition: 

𝑟1
2+𝑟2

2+2𝑟1𝑟2 cos(∅) ≤ (E+E')2 

 

      As assumed, there is no longitudinal walls’ motion. This assumption constrains wall 

deformation., However, this doesn't imply that the canal is rigid while moving longitudinally. 

 

Basic Equation 

The equations for a fluid with a Carreau structure (Continued [14]): 

𝜏 = −𝑃 𝐼 + 𝑆                                                                                                                           (3) 
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S ̅ =  −[𝜇∞+(𝜇0 - 𝜇∞)(1+(Γ�̇� ̅ )2)
𝑛−1

2 ] �̇� ̅                                                                                  (4) 

 

      Where (𝑆 ̅) express the extra stress tensor, ∇̅=(∂X̅ , ∂Y ̅, 0) the gradient vector (µ) the 

dynamic viscosity and the shear rate which is defined by: 

γ ̇ = √
1

2
tras(A11)2 , =√

  1  

  2  
Π                                                                                                  (5) 

 

       Where Π is the second invariant of strain-rate tensor We consider in the constitutive 

equations 3) the case for which 𝜇∞=0 and So we can write  

S ̅ =  −𝜇0 [1+(𝛤�̇� ̅)2)
𝑛−1

2 ]�̇� ̅                                                                                                      (6) 

s̅x̅x̅ = -2𝜇0[(1 + (Γẏ ̅)2)
𝑛−1

2  ] u̅x̅                                                                                               (7) 

s̅x̅ y̅= s̅ y̅x̅ = −𝜇0 (1 + (Γẏ ̅ )2)
𝑛−1

2  ] . ( u̅y̅ + v̅x̅ )                                                                       (8) 

s̅y̅y̅ = −𝜇0 (1 + (Γẏ ̅ )2)
𝑛−1

2  ] v̅y̅                                                                                               (9) 

And 

�̇� ̅= √2[(u̅x̅)2 + (v̅y̅)2] + [u̅y̅ + v̅x̅]2                                                                                     (10) 

 

4- The governing equation 

       The continuity equation may be used to illustrate the fundamental equations of motion in 

a peristaltic transport and magnetic of carreau fluid in experimental frame (x̅, y̅)  
∂ u̅

∂x̅
+

∂ v̅

∂y̅
= 0                                                                                                                           (11)   

 

The x ̅– part of instant equation: 

 ρ ( 
∂ u̅

∂t̅
+ u̅

∂ u̅

∂x̅
+ v̅

∂ u̅

∂y̅
) − ρΩ(Ωu − 2 

∂ v̅

∂t̅
) =  −

∂p̅

∂x̅
+

∂ 

∂x̅
s̅x̅x̅ +

∂ 

∂y̅
s̅x̅y̅ − 𝜎𝐵0

2u −
𝜇

k̅
 u̅            (12) 

The y ̅– part of instant equation: 

ρ ( 
∂ v̅

∂t̅
+ u̅

∂ v̅

∂x̅
+ v̅

∂ v̅

∂y̅
) − ρΩ(Ωv̅ − 2

∂ u̅

∂t̅
) =  −

∂p̅

∂y̅
+

∂ 

∂x̅
s̅x̅y̅ +

∂ 

∂y̅
s̅y̅y̅ − σ𝐵0

2v̅  −
𝜇 

k̅
v̅               (13) 

 

        wherever (ρ)( p) (µ) (k) (𝐵0)(Ω)the constant density, pressure ,dynamic viscosity, 

permeability parameter, constant magnetic field, rotation, and (u) (v) are the velocities in X 

Figure 1:  Cartesian Dimensional Asymmetric Channels Coordinates. 
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and Y paths in given frame The flow in the framework for a laboratory is erratic (x̅, y̅). 

Therefore, with a coordinate system traveling at the rapidity of a wave (c) in wave frame (X, 

Y), the motion is steady. The following expressions 

The no dimensional bounds as: 

x=
 1 

𝜆
x̅ , y=

 1 

 d
y̅ , u=

 1 

 c 
u̅ , v=

 1 

𝛿𝑐
v̅ , t=

 c 

𝜆
t ̅, 𝛿=

 d 

 λ 
 , h1=

 1 

 E 
h̅1 , h2=

 1 

 E 
h ̅2 , Re=

ρcd

μ
 ,  Ha=d√

𝜎

𝜇
𝛽0 , 

Da=
 K

d2 p=
  d2

λμc
p̅ , We=

Γc

d
 , �̇� =

 d 

 c 
�̇� ̅ , Sxx =

 λ 

μc
s̅x̅x̅ , Sxy =

 d 

μc
 s̅x̅y̅ , Syy =

 d 

μc
s̅y̅y̅                      (14)                                    

 

       (δ) wave number, (Re) Reynold number, (Ha) Magnetic field, (∅) phase difference, (Da) 

Darcy number, Then, as a result of equation (14) equations (1), (2) and (7) to (10) take the 

form:  

 

h1(x, t) = 1 − 𝑟1 sin[2πx].                                                                                                       (15) 

The equation (2) becomes: 

h2(x,t)=−E′ − r2 sin[(2πx) + ∅]                                                                                           (16) 

The equation (7) becomes: 

sxx = −2δ[1 + (
𝑛−1

2
)(We)2(�̇�)2]

∂u

∂x
                                                                                     (17) 

The equation (8) becomes: 

  sxy = −(1 + (
𝑛−1

2
)(𝑊𝑒)2(y ̇ )2) (

∂u

∂y
+ δ2  

∂vl

∂x
)                                                                   (18) 

The equation (9) becomes: 

syy = −2δ(1 + (
𝑛−1

2
)(𝑊𝑒)2 (y ̇ )2) 

∂v

∂y
                                                                                 (19) 

The equation (10) becomes: 

  y ̇ = √2δ2((
∂u

∂x
)2 + (

∂v

∂y
)2) + (

∂u

∂y
+ δ2 ∂v

∂x
)2                                                                         (20) 

The equation (11) becomes: 

   
∂u

∂x
+

∂v

∂y
= 0                                                                                                                         (21) 

The equation (12) becomes 

𝑅𝑒 𝛿(
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) −

𝜌𝑑2

𝜇
𝛺2𝑢 + 2𝛺𝛿2𝑅𝑒

𝜕𝑣

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥
+ 𝛿2 𝜕

𝜕𝑥
𝑠𝑥𝑥 +

𝜕

𝜕𝑦
𝑠𝑥𝑦 − [(𝐻𝑎)2 +

1

𝐷𝑎
]𝑢                                                                                                                                        (22) 

and then Eq. (13) becomes 

𝑅𝑒 𝛿3(
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) − 𝛿2 𝜌𝑑2𝛺2

𝜇
𝑣 − 2𝛿𝛺𝑅𝑒

𝜕𝑢

𝜕𝑡
= −

𝜕𝑝

𝜕𝑦
+ 𝛿2 𝜕

𝜕𝑥
𝑠𝑥𝑦 + 𝛿

𝜕

𝜕𝑦
𝑠𝑦𝑦 −

𝛿2(𝐻𝑎2 +
1

𝐷𝑎
)𝑣                                                                                                                      (23) 

 

The stream function (ψ) is connected with the velocity components by the relations: 

𝑢 =
𝜕𝜓

𝜕𝑦
  ,  𝑣 = −

𝜕𝜓

𝜕𝑥
                                                                                                               (24) 

Substituted Equations. (24) in equations (17), (18), (19), (20), (21), (22) and (23) respectively: 

 sxx = −2δ[1 + (
n−1

2
)(We)2(y ̇ )2](

∂2ψ

∂x ∂y
)                                                                             (25) 

sxy = −(1 + (
n−1

2
)(We)2(y ̇ )2)(

∂2ψ

∂y2 − δ2 ∂2ψ

∂x2 )                                                                     (26) 

syy=2δ(1 + (
n−1

2
)(We)2 (y ̇ )2) (

∂2ψ

∂x ∂y
)                                                                               (27) 

y ̇ = √2δ2[(
∂2ψ

∂x ∂y
)2 + (

− ∂2ψ

∂x ∂y
 )2] + [

∂2ψ

∂y2
− δ2 ∂2ψ

∂x2
]                                                                (28) 
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∂2ψ

∂x ∂y
−

∂2ψ

∂x ∂y
= 0                                                                                                                    (29) 

Re δ(
∂2ψ

∂t ∂y
+

∂3ψ

∂x ∂y2
−

∂3ψ

∂x ∂y2
) −

𝜌𝑑2Ω2

𝜇

𝜕ψ

𝜕𝑦
− 2𝛿2ΩRe

𝜕2ψ

𝜕𝑡𝜕𝑥
= −

∂p

∂x
+ δ2

∂

∂x
sxx +

∂

∂y
sxy − 

(Ha2 +
1

Da
 )

∂ψ

∂y
                                                                                                                        (30) 

Re δ3(−
∂2ψ

∂t ∂y
+

∂3ψ

∂x2 ∂𝑦
−

∂3ψ

∂x2 ∂𝑦
) + 𝛿2

𝜌𝑑2Ω2

𝜇

𝜕ψ

𝜕𝑥
− 2𝛿2ReΩ

𝜕2ψ

𝜕𝑡𝜕𝑦
= −

∂p

∂y
+ δ2

∂

∂x
sxy + 

δ
∂

∂y
syy − δ2(Ha2 +

1

Da
)

∂ψ

∂x
                                                                                                    (31) 

The dimensionless boundary conditions in the wave frame are:          

𝜓 = f/2            , 𝜕𝜓 = − ∂y         at         y= h1                                                                    (32) 

𝜓 = −f/2         , 𝜕𝜓 = − ∂y         at         y= h2                                                                    (33) 

    

      In the wave frame (F) is the dimensionless temporal mean flow rate". Through the 

expression, it is related to the dimensionless temporal mean flow rate Q in the laboratory 

frame 

 

5- Solution of the Problem 

    The system Equations (31) is highly nonlinear and difficult, obtaining a exactly solution for 

all of the arbitrary parameters involved is impossible. To locate the solution, we use the 

perturbation approach. We extend for the perturbation solution.  

Ψ = Ψ0 + (𝑊𝑒)2Ψ1 + 𝑂((𝑊𝑒)4) 

𝐹 = 𝐹0 + (𝑊𝑒)2𝐹1 + 𝑂((𝑊𝑒)4)                                                                                          (34) 

𝑃 = 𝑃0 + (𝑊𝑒)2𝑃1 + 𝑂((𝑊𝑒)4)  

Substitute the terms (34) into Equation (25) together with the boundary conditions Equation 

(32) also (33) Since ((δ ≤ 1)), the higher order terms involving the power of δ are smaller and 

hence unimportant, we get the following system of equations by equating the coefficients of 

comparable powers of ( We ) : 

From Equation (26) and Equations (30) we get: 
dp

dx
= −𝜓𝑦𝑦𝑦 − (

𝑛−1

2
)(𝑊𝑒)2(

𝜕2𝜓

𝜕𝑦2)2𝜓𝑦𝑦𝑦 + 𝜂𝜓𝑦 − 𝛽𝜓𝑦                                                         (35) 

𝜂 =
ρ𝑑2Ω2

μ
                                                                                                                                (36) 

β = H𝑎2 +
 1 

𝐷𝑎
                                                                                                                         (37) 

from differential of y for Equation (35) 

0 = −ψyyyy − (
𝑛−1

2
)(𝑊𝑒)2(

𝜕2𝜓

𝜕𝑦2)2𝜓𝑦𝑦𝑦𝑦 + 𝜂𝜓𝑦𝑦 −  𝛽 ψyy                                                  (38) 

From Equation (31) we get: 
∂p

∂y
= 0                                                                                                                                    (39) 

5.1-  For the system of order Zero (W𝒆(𝟎)) 

      When the terms of order (We) are negligible in the zeroth order system, we get: 

ηψ0yy − ψ0yyyy − βψ0yy = 0                                                                                               (40)  

Such that 

𝜓0 = f0/2  ,  ∂ψ0 = −𝜕𝑦       at y= h.1                   

  𝜓0 = −f0/2 ,  𝜕𝜓0 = −𝜕𝑦     at y= h.2 .                                                                             (41) 

5.2-  For the System of order two (W𝒆(𝟐)) 

ηψ1yy
− ψ1yyyy − [(

𝑛−1

2
) ψ0yy

2 ψ0yyyy] − βψ1yy = 0                                                          (42) 

ηψ1yy
− ψ1yyyy − βψ1yy = (

𝑛−1

2
) ψ0yy

2 ψ0yyyy                                                                    (43)  
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ψ1 = f1/2 , 𝜕𝜓1 = − ∂y                  at y= h.1     and 

ψ1 = −f1/2  , 𝜕𝜓1 = − ∂y              at y= h.2                                                                        (44) 

   

      And get the final equation for stream function by solving the associated zeroth and first 

order systems: 

𝜓 = 𝜓0 + (W𝑒2) 𝜓1                                                                                                              (45) 

    

      Where the functions (Ψ0 , 𝜓1 ) hefty expressions Consequently, they will be mentioned in 

Appendix. The Equation (30) can be written as: 
dp

dx
= −ψ0yyy − (

𝑛−1

2
)(𝑊𝑒2)(

𝜕2ψ0

𝜕𝑦2 )2ψ0𝑦𝑦𝑦 + ηψ0y − βψ0y                                                 (46) 

   The pressure rise per wave length (∆p) is well-definite: 

Δp = ∫
dp

dx

1

0
dx                                                                                                                         (47) 

 

6- Results and Discussion 

      To examine the influence of , Darcy Figure (Da), Reynolds Figure (Re), Rotation (𝛺), 

Porous medium parameter (k), Material fluid parameters (We), Density (𝜌), Viscosity (𝜇) 

Magnetic field (Ha) and phase difference (∅), the plotted axial velocity (u), pressure rise (∆p) 

and stream function (𝜓) in Figure 2-18 utilizing the program, shown "MATHEMATICA". 

 

7- Velocity Distribution (u) 

       (Figure 3,6) show the effect of different values for (Da)and (Ω) on the velocity axial (u), 

when axial speed increases, it starts decreasing and then it is combined with the other, 

(Figure 4) It shows no effect of different values for (µ) on the velocity axial (u), (Figure 2,5) 

show the effect of different values for (Ha)and (We)on the velocity axial (u) It increases with 

increasing values, but starts decreasing from the lower right, (Figure 7) show the effect of 

different values for (∅) on the velocity axial (u), It can be seen that it increases with 

increasing values from the lower left side and starts decreasing from the middle towards the 

lower right. 

 

8- Pressure Rise (∆p) 

      Figures 8–14 display the various pressure increases in the wave outline's capability of 

volumetric stream rate for various Darcy number (Da), Rotation (Ω), fluid parameter (We), 

magnetic field (Ha) and phase difference (∅). The link between the average pressure that is 

not dimensional rises per wavelength and the dimensionless mean flow rate (Q1) with 

difference in the characteristics of interest included in (∆p) will be demonstrated in this 

subsection, Figure.8 shows the effect of parameter (Ha) on (Δ𝑃) reveals that pressure 

increases with an increase in the value of (Ha) and decreases with a decrease in the value of 

(Ha), Figure.9 Shows the effect of parameter (Da) on (Δ𝑃) reveals that pressure decreases 

with an increase (Da) and increases with a decrease (Da), Figure.10 shows the effect of 

increasing the parameter (µ) on (Δ𝑃) reveals that pressure rice per wave length (Δ𝑃) increase 

in all regions, Figure.11 shows the effect of increasing the parameter (We) on (Δ𝑃) reveals 

that pressure rice per wave length (Δ𝑃) increase in all regions, Figure.12 shows the pressure 

rice for each wavelength that decreases in magnitude with increasing parameter (Ω). Figure 

13 It shows us that the pressure(Δ𝑃)  is not affected by the increase or decrease of the 

parameter (∅) 
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Figure 2: Effectiveness of various 

parameters of (Ha) on the velocity while 

Da=7, µ=0.3, We=0.3, Ω=0.03, d=1.5, 

v=0.5, Q=1.5, ∅=1.5, a=0.5, b=0.5, 

E=0.03, n=1. 

 

Figure 3: Effectiveness of various 

parameters of (Da) on the velocity while   

Ha=2, µ=0.3, We=0.3, Ω=0.03, d=1.5, 

v=0.5, Q=1.5, ∅=1.5, a=0.2, b=0.2, 

E=0.5, n=2 

 

Figure 4: Effectiveness of various 

parameters of (µ) on the velocity while 

 Ha=8, Da=7, We=0.3, Ω=0.03, d=1.5, 

v=0.5, Q=1.5, ∅=1.5, a=0.2, b=0.2, 

E=0.5, n=1 

 

Figure '5'"Effectiveness of various 

parameters of (We) on the velocity while  

Ha=6, Da=7, µ=0.3, Ω=0.03, d=1.5, v=0.5, 

Q=1.5, ∅=1.5, a=0.2, b=0.2, E=0.5, n=1 

 

Figure 6: Effectiveness of various 

parameters of (Ω) on the velocity while 

 Ha=7.5, Da=7, µ=0.3, We=0.3, d=1.5, 

v=0.5, Q=1.5, ∅=1.5, a=0.2, b=0.2, 

E=0.5, n=1 

 

Figure 7: Effectivenessof various 

parameters of (∅) on the velocity while 

 Ha=7, Da=7, µ=0.3, We=0.3, Ω=0.03, 

d=1.5, v=0.5, Q=1.5, a=0.2, b=0.2, 

E=0.5, n=1 

 

Figure 5:"Effectiveness of various 

parameters of (We) on the velocity while  

Ha=6, Da=7, µ=0.3, Ω=0.03, d=1.5, v=0.5, 

Q=1.5, ∅=1.5, a=0.2, b=0.2, E=0.5, n=1 
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Figure 8: The effectiveness of various 

(Ha) values on pressure (Δ P) while 

Da=0.9, µ=0.2, We=0.001, Ω=0.8, d=1.5, 

v=0.5, Q=1.5, ∅=0.01, a=0.2, b=0.2, 

E=0.5, n=1 

Figure 9: The effectiveness of various 

(Da) values on pressure (Δ P) while 

Ha=2, µ=0.2, We=0.001, Ω=0.8, d=1.5, 

v=0.5, Q=1.5, ∅=0.01, a=0.2, b=0.2, 

E=0.5, n=1 

 

 

 

 

Figure 10: The effectiveness of various 

(µ) values on pressure (Δ P) while 

Ha=2, Da=0.9, We=0.001, Ω=0.8, d=1.5, 

v=0.5, Q=1.5, ∅=0.01, a=0.2, b=0.2, 

E=0.5, n=1 

Figure 11: The effectiveness of various 

(We) values on pressure (Δ P) while 

Ha=2, Da=0.9, µ=0.2, Ω=0.8, d=1.5, 

v=0.5, Q=1.5, ∅=0.2, a=0.2, b=0.2, E=0.5, 

n=1 

Figure 12: The effectiveness of various 

(Ω) values on pressure (Δ P) while 

Ha=2, Da=0.9, µ=0.2, We=0.001, d=1.5, 

v=0.5, Q=1.5, ∅=0.2, a=0.2, b=0.2, 

E=0.5, n=1 

Figure'13' The effectiveness of various (∅) 

values on pressure (Δ P) while 

Ha=2, Da=0.9, µ=0.2, We=0.001, Ω=0.8, 

d=1.5, v=0.5, Q=1.5, a=0.2, b=0.2, E=0.5, 

n=1 
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9- Conclusions 

      A mathematical model was used to inspect the peristaltic motion of Carreau's fluid in an 

asymmetric porous material. Where this study was conducted to know the effect of both 

magnetism and rotation. Under turbulence technique is used Approximate long and low 

wavelengths Reynolds number. to express the axial velocity Graphs are used to illustrate the 

results as follows: 

• The velocity profile increases in view of an increase in (Ha)(We) but decreases with 

             increasing(Ω)(∅) 

• When increasing the speed relative to (Da) it starts decreasing and then remains constant. 

• The velocity profile is not changes despite the variance in parameter values(µ) 

• the pressure rice per wave length Δ𝑃 decreases in magnitude for fixed values of the 

viscosity Ω, show the effect of increasing the parameter We and µ on Δ𝑃 reveals that pressure 

rice per wave length Δ𝑃 increase in magnitude in all regions. 

• the pressure rice per wave length Δ𝑃 is not changes despite the variance in parameter 

values(∅) 

• There are several applications for peristaltic movement in both engineering and physical 

sciences. These waves, which spread throughout the length of an extensible tube and mix and 

transport fluid in the wave's direction, are really produced by the expansion and contraction of 

the extensible tube. The ureter and extracorporeal blood circulation are two tubular organs in 

the human body where this process takes place 
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