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Abstract

A k-set in the projective line is a set of k projectively distinct points. From the
fundamental theorem over the projective line, all 3-sets are projectively equivalent. In
this research, the inequivalent k-sets in PG (1,25) have been computed and each k-set
classified to its (k — 1)-sets where k = 5, ...,13. Also, the PG (1,25) has been splitting
into two distinct 13-sets, equivalent and inequivalent.
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1. Introduction

The structure of projective line over the finite field F;, PG(1,q), has been studied by many
mathemations for small g. In 1998, the results about PG (1, q)for 2 < q < 13 have been summarized by
Hirschfeld in [1] where a full classification of PG (1,11) has been done by Sadeh in [2] and of PG(1,13)
has been done by Ali in [3]. In [4], Al-Seraje gave a full classification of PG(1,17) and gave the
inequivalents k-sets only on PG(1,16) and PG (1,23) in [5, 6]. Al .Zangana in [7] studied the geometry of
line of order nineteen and the conic, where a full classification and its application to error correcting
codes have been given. Also, Al .Zangana using the relation between conic and projective line the
spectrum sizes of k-sets on PG (1,23) are given as a direct results from this relation in [8].
The aim of this research is to classify the projective line PG (1,25) and then splitting the line into two 13-
sets some of them are equivalent and others are not.

*Email: elafalani89@gmail.com
360



AL-Zangana and Shehab Iragi Journal of Science, 2018, Vol. 59, No.1B, pp: 360-368

2. Basic Definitions and Results
A projective line PG(1,q) has q + 1 points which are one-dimensional subspaces of a two-dimensional
vector space V (3, g)over the finite field F; of q elements. These points also can be represented by
P(to,t1), t;€F,;.So0,

PG(1,q) = {P(t,1) | t € F;} U {P(1,0)}.
Each point P(ty,t;) with t, # 0 is determined by the non-homogeneous coordinate t,/t; . The
coordinate for P(1,0) is infinity, so the points of PG (1, q) can be represented by the set

Fy U {oo} ={o0,A4,4;,...,44 | 4; EF, }.
Definition 2.1[1]

A projectivity PG(1, q) has given by2 X 2 non-singular matrix A matrix F, denoted by M(A), such
that
a

Y = AX, where X=(xg,x1), Y=(¥.y;) and A = [, 2] If puts = y/y,and t = x, /x;, then the

projectivity can be written as an equation
s = (at + b)/(ct + a).

Definition 2.2[1]

A k-set in the projective line PG (1, q) is a set of k projectively distinct points.
Theorem 2.3[1].(The Fundamental Theorem of Projective Geometry)

If {Py,..,Pryrtand{P'y,...,P',,41} are both subsets of PG(n,q)of cardinality n + 2 such that no
n + 1 points chosen from the same set lie in a hyperplane, then there exists a unique projectivity T such
that P’; = Ptfori=0,1,..,n+ 1.
According to above theorem in the projective line, all 3-sets are projectively equivalent.
The following groups occur in this work and for more details about them see [9].
Z, = Cyclic group of order n.
V, = Klein 4- group which is the direct product of two copies of the cyclic group of order 2.
S, = Symmetric group of degree n.
A, = Alternating group of degree n.
D,, = Dihedral group of order 2n =< r,s|r™* = s? = (rs)2 =1 >.
During this paper the notation SG-type is used for the stabilizer group type, No. for the number of
reputation of that group and the symbol Ord(g) refers to order of group element g.
Definition 2.4[1]

The cross-ratio A={P;,P,;Ps,P, } of four ordered points P, , P,, P;, P,€ PG(1, q) with coordinates t;,t,
ts ,ty 1S

A ={Py,P;P3,Py }={t1,t; t3ty }=(t; — t3)(tz — ta)l(ty — t4)(t2 — t3).

Lemma 2.5[1]

The Cross- ratio has the property that
(1) A={ty,to;ts,ts Y={to,t1ta ts }={t3,t4;t1,t2 }={ts,t3;t2,t1 }. SO, {Py, P,; P5,P, } is invariant under a
projective group of order four, given by
{1, (P1P;)(P3Py),(PyP3) (P2 Py),(P1 Py) (P2 P3)}=Vs,
(i) the cross-ratio takes just six value under all 24 permutations of {P;,P, ,P; ,P, },
A, UN, 1=, 1/(1-0), A-1)/A, M(A-1),
(iil) A={tq,t,;t3,t, }takes the values oo, 0 or 1 if and only if two of them are equal,
(iv) a projectivity is determined by the images of three points. Therefore, there exists a projectivity
T = M(A) such that Q; = P;A,i = 1,2,3,4 if and only if the cross-ratios of the two sets of four points in
the corresponding order are equal.
During this research, a 3-set is called a triad, a4-sets is a tetrad, a 5-set a pentad, a 6-set a hexad, a 7-set a
heptad, an 8-set an octad, a 9-set a nonad, a 10-set a decad.
Definition 2.6[1]

Let A be the cross ratio of a given order of a tetrad. The tetrad is called
(i) harmonic, denoted by H, if A=1/A0orA=1/(A—1)orA=1—-4;
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(ii) equianharmonic, denoted by E, if A = 1/(1 — A) or, equivalently,
A=@A-1D/4
(iii) neither harmonic nor equianharmonic, denoted by N, if the cross-ratio is another value.
Lemma 2.7[1]
(i) The cross-ratio of any harmonic tetrad has the values —1,2,1/2.
(ii) The cross-ratio of a tetrad of type E satisfies the equation
A+21+1=0. (1.2
Therefore equianharmonic tetrads exist if and only if A3 + 1 = 0 has three solutions in Fpori=—1is
a unique solution of (1.1) in F,.
In this research all tetrad containing the points oo, 0, 1 because
1- the value oo, 0, 1 cannot appear as the cross ratio of a tetrad whose four points are distinct,
2- three distinct points in PG (1, q) are projectively equivalent.
the cross-ratio A={,0;1,t} =t, it is necessary to consider the elements t € F;/{0,1} and the
corresponding tetrads {, 0,1, t}.
Hence there are three classes of tetrads:
x1 = {tetrads of type H},
X2 = {tetrads of type E},
X3 = {tetrads of type N}.
Lemma 2.8[1]
(i) in PG(1,q), q = p",p > 3, the number of harmonic tetrads n,, is
q(g*-1)/8
and the stabilizer group Gof each one is D,.
(i) in PG(1, q), q = 1(mod 3), the number of equianharmonic tetrads ng is
q(q® —1)/12
and the stabilizer group G of each one is A,.
(iii) The stabilizer group of any tetrads in y5 is of type V.
3. Algorithms
In this section, the algorithms that needed are described. Algorithm A describe the matrix transformation
between two tetrads, Algorithm B describes the way to compute the inequivalent k-sets and Algorithm C
describes the way to compute the stabilizer group of k-set.
Algorithm A
A projectivity T = M(A) in PG(1, q) is given by the equation
tY = XA,
where Y = (yo,y1), X = (x0,%1), A = (t;5), t € F;,\{0}; that is,
Xotoo t X1t10 = tYo,
X1tyo + Xty =ty
Since any two triads are projective inequivalent to find a projectivity maps
P(1,0)to P(agy, a,),
P(0,1)to P(by, by),
P(1,1)to P(cy, 1),
the following procedure can be used.
Let a, p € F;\{0} and
(1,0)A = a(ay, ay),
(0,4 = p(bo, by).
Then
aa, aaq
4= (pb0 pbl)'
Also , there is y € F;\{0}, such that(1,1)A = y(c, ¢1). This gives a non- homogeneous system

(@ ) ()=G2)
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and this system has a unique solution given by

ae_rP_r
Dy D, Ds
where
CO b0| _ ao Co _ ao bo
Dy = ¢, by ’D2_|a1 C1|’ 37 la; by 0.
Thus,

D3A _ (D1a0 D1a1)
Y B DZbO DZbl
and T = M (A).Therefore, the tetrad
K ={P(1,0),P(0,1),P(1,1), P(ko, k1)}

equivalent to

K* = {P(ao, al)' P(bo, bl)' P(COJ Cl)' P(dO' dl)}
if and only if
(ko k1)A = t(dy, dy), t € F;\{0}.
Algorithm B
Input: 4,
Output: Ay
1:Ag =0
2: for all A€A _kdo
3:forall B(# A) € A_kdo
4if CR(A)=CR(B) and |S_A |=|S_B| and Clas(A) = Clas(B) then Clas(H) is (k — 1)-set types
of H
5: Construct matrix transformation T; from the tetrad t* of A to tetrads t; of B
6: if AT; » B for all i then
7:Add Bto Ay
8: end if
9:end if
10: end for
11: end for

Algorithm C.

Let Par(A) be the set all distinct tetrads in a k-set A.
Input:A
Output:S,
1.5,=0
: for allt; € Par(A)do
: Construct matrix transformation T; from t* € A to tetrads ¢;
ifAT; — Athen
: Add Ti to SA
end if
: end for
. Classification of The Projective Line PG(1,25)
Lemma 2.5 turns out that among the (246) = 14950 defrents tetrads in PG(1,25), there are exactly five
classes of tetrads as shown below:
M; = {the class of H tetrads} {=,0,1, a} for a = g, 12, B18;
M, = {the class of Etetrads}{oo, 0,1, b} for b = g4, 52°;
Mj; = {the class of N;tetrads} {e, 0,1, c} for c = 3, B°, 88, 516, p1°, ?3;
M, = {the class of N,tetrads} {0, 0,1,d} for d = g2, 11, 13, p%1, 22,

OO0 ~NO O b
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Mg = {the class of Nstetrads}{co,0,1,e} fore = p7, 82, >4, g0, p17.
From Lemma2.6 deduced that |M,|= 1950, [M,|= 1300, |M;|= |M4| = |M5| = 3900.
A represented one has been chosen from each class as shown below.

The tetrad H = {0, 0,1, 32} chosen from M;.

The tetrad E = {o0,0,1, 8*} chosen from M,.

The tetrad N; = {00, 0,1, 8} chosen from M.

The tetrad N, = {o0,0,1, 32} chosen from M,.

The tetrad N3 = {0, 0,1, 37} chosen from Ms.

Theorem 4.1. On PG(1,25), there are

(i) five projective distinct tetrads, see Table-1,

(ii) 8projectively distinct pentads, see Table-2,

(iii) 28projectively distinct hexads, see Table-3,

(iv) 54projectively distinct heptads, see Table -4,

(v) 131 projectively distinct octads, see Table-5,

(vi) 225projectively distinct nonads , see Table-6,

(vii) 398 projectively distinct decads , see Table-7,

(viii) 531 projectively distinct t 11-sets, see Table-8,

(ix) 692 projectively distinct 12- sets, see Table-9,

(x) 714 projectively distinct 13- sets, see Table-10.

Table 1- Distinct tetrads on PG (1,25)

Type The tetrads SG-type
H {=0,0,1,5'%} Dy =((B*t + pH)/(t + p%),1/B**t)
E {0,0,1, 8} Ay =((B°t + 1), /1)
Ny {=,0,1,5} Vo =(B/t, (Bt + D/(B't + 1))
N, {0,0,1,5%} Vo = (B*/t, (Bt + /Bt + 1))
N3 {=,0,1,7} Vo= (B7/t, (B2t +1)/(B°t + 1))
Table 2-Inequivalent pentads
Type The pentads SG-type
Py {0,012} Zs ) Zy = (1/(t + B*%), tB'® + B?))
P, {0,0,1 82,8} I
P3 {0,0,1,8%%,5%} Zy =((t + 1)/t + p*?))
Py {,0,1,8'2,8%} I
Ps {0,0,1,* 8%} Zy = (B*/t)
Ps {=0,0,1,5* 5%} Ss =((B°t +1),p%/(t + 7))
Py {,0,1,8.5%} Zy = (B?/t)
Py {0,0,1,5,5%} Zy = (t/(t+ %))
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Type The hexad Type of pentads SG-type
H, {,0,1,8"%,5° 5%} PP P PP Py Ss ={(t + 1), *t)
H, {,0,1,8"%,5° 8} P1 Py PPy Py Ps I
Hs {0, 0,1, 82,8, B} Py P3P Py P7Ps Zy = (B +1)/(B7t+ 1))
H, {,0,1,8'%,8, 8} PPy P7P3PsPs I
Hs {0, 0,1, 82,8, 8*} PPy Py PPgPs 1
Heg {,0,1,8'%,8,8°} PP PePaPePy Zy =((t + 1)/ (t + %))
H; {,0,1,8'%,8,87} Py PPy Py Py Py Zy =((t+B'H)/B*(t+ 1))
Hg {0, 0,1, 82,8, %} P PP Py Pr Py Zy = (Bt + %)/ (t + 1))
Hy {,0,1, 82,8, 8°} PoPaPyPrPr Py Zy = (Bt +1)/(B"'t + 1))
Hyo {=,0,1,5"%,B, 8%} P P3 PPz PgP, Zy = ((t + 1)/(B™t + ')
Hyy {,0,1,8'%,8, 8"} PP Py Py Pr P, S = (BT }l-){gﬁl/lﬁt’lzﬂ
Hy, {,0,1,8%,8, 8} PP Py Py PePs Vi = (B'*t,B/t)
Hys {,0,1,8%,8, 8} P P3Py P7 PP I
Hiy {,0,1,8"%,8, 8} Py PyPsPs PPy I
His {,0,1,5%,8,'°} Po PPy PsPyPs Zy ={(t+ B/t +B")
Hie {,0,1,8'%, B, 8*°} Py PaPeP7P7Ps 1
Hy7 {,0,1,8'%,8,8%'} Po PPy Ps Py Ps Zy ={(t+B%)/(t+ ")
Hig {,0,1,8'%, B, 8**} P, P3P7P5PgPs I
Hio {,0,1,8'%,8,8%°} Py Py PrP7 PP, Vy = (1/t, (Bt + B**)/(t + B*3))
Hao {0, 0,1, 8%, 8% B*} P3Py PsPyP3Ps Zy = (Bt + Y/t + 1))
Haq {0, 0,1, 8%, 8% B°} P3Py PsP3 PaPs Z, = (Bt + 1)/(B**t + B**))
Hy, {,0,1,8"%,5% 5%} P3 P3Py Py Py Py Ve = (1/Bt, (t + D/t + %))
Hys {,0,1, 8%, 5% '} P3P PP PsPs | Vy = (B'%t, B%/t)
Hyy {,0,1,8'%,B% B*°} PoaPaPaPsPePes V, = (B°t, B3 /t)
Hjs {,0,1,8"%,8% 5"} PoPyP7PsPs Py Zy =((t+B'H)/B*(+ 1))
Hae {,0,1,8"%,5% %%} PaPyPsPgPsPg Z, ={(t+1D/(t+B"))
Haq {,0,1,8,8% 8} P7P7P7P7P7P; S3 ={((B*t + 1)/(B°t + 1), 3/t)
B | {0 0LBBETY | PRRARR | (et T
Table 4-Stabilizer group type of heptads
SG-type No.
I 32
Zy 18
7 3
7, 1
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Table 5-Stabilizer group type of octads

SG-type No.
I 78
Z, 39
Va 8
S3 2
D, 1
Dg 1
Dg 1
W 1
Table 6-Stabilizer group type of nonads
SG-type No.
I 180
Z, 37
Sa 3
Zs 1
Z, 1
Zg 1
Table 7-Stabilizer group type of decads
SG-type No.
I 294
Z, 2
Zq 6
Vs 10
D, 2
D 1
A, 1
Dg 1
Table 8-tabilizer group type of 11- sets
SG-type No.
I 463
Z, 62
A 2
S3 3
D< 1
Table 9-Stabilizer group type of 12- sets
SG-type No.
I 559
Z, 110
Zs 2
V 15
Sa 3
D¢ 1
Dy, 2
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Table 10-Stabilizer group type of 13- sets

SG-type No.

I 626

Z, 74
Zs 8
Ze 1
Z1y 1
Z, 3
Dy 1

In the following examples, some k-sets have been chosen where k = 9, ---,13 with unique largest size
of stabilizer group.
Example 4.2
(i) There is unique nonads X = {0,0,1, 8, 8%, B5, 56, £1?, 5?°} with stabilizer group of type Zg as given
below.

Zg =< BBt +1) >

(ii) There is a unique decad
R = {0,0,1,5, 8%, B° B°, B B2, p18} with stabilizer group of type
Dg = < B3t/(B*t + 1), (B**t + %) >.
(iii) There is a unigell-set
H = {,0,1,8,8% % % B7, B 2, B, B8} with stabilizer group of type
Ds =< 1/(t+ 1), (B2t + B4/ (Bt + 1) >.
(vi) There is a unigel12-set
J ={0,0,1,8, 8% 83,8, 5° 612, p1*, B8, p1°} with stabilizer group of type
De =< (B*°t + B°)/(B*°t + 1), (B°t + B'*)/(t + B*°) >.
(iv) There is a unique 13-set
F = {0,0,1,B, 5% B3, B4 B, £, p12, 16, p17, p?2} with stabilizer group of type
D13 =< 1/B°(t + %), (Bt + B).
5. Splitting
Each 13-set K; and its complement K;“splitting PG(1,25). The stabilizer group Gy, of K; also fixes the
complement K;°. If PG(1,25) split into two 13-sets K = {K;, K;°}, then the stabilizer group of the
partition K is as follows.
(i) If K; projectively inequivalent to its complement K;¢, then Gy is Gg; and  the stabilizer group of the
splitting is also G-
(ii) If K; projectively equivalent to its complement K;¢ then the stabilizer group of the splitting isGy;
union of all linear transformation between K; andK;“. In this case, the stabilizer of the splitting generated
always by two element one of them belong to G ,and other is projectivity between K; andK;“.
Theorem 5.1

The projective line PG(1,25) has
(i) 158 projectively distinct partitions into two equivalent 13-sets(EQ).
(ii) 556 projectively distinct partition into inequivalent 13-sets (NEQ).
The partitions details are given in the following table.
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Table 11-Partition of PG (1,25) into two 13-sets

EQ:{K; = K;°} NEQAK; # K;“}
Z, 120 I :506
V,:26 Z,:48
S3:6 Z3:2
D,:3
Dg:l
D51
Gs,:1

The group Gs, has one element of order 1, 27 element of order 2, 12 element of order 13, 12 element
of order 26.

Example 5.2
(i) The unique 13-set K; = {0,0,1, B8, B%, B3, B°, B2, B°, B2, B*, B8, B°} which has stabilizer group of
type Zg = (BBt + BO)/ (BBt + 1)) formed with its complement

K;. ¢ ={B* B% B7,B°, B, B3, B, B16, B17, B0, B*1, B2, B3} splitting as the projective line such
that K;, = K; ©. The projective equation which maps K; to K; © is given as follows.
B¢+ B%)
t+p7
This splitting has stabilizer group of type D is generated by the following two elements:
_ B+ pe b= B3(t + B°)
CTEEcr1 T T
(i) The 13-set K;, = {0,0,1,B,B8% B> B* B B7B** B'*, B°, B8} has stabilizer group of type
Zsformed with its complement K¢ = {8°, 88,B°, B, p1*, B3, B*5, B7, B*°, B2°, B**, B%2, >3} splitting
the projective line such that K;, % K’ .
HereZ; is generated by the element

BB
- (BBt + 1)

c
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