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Abstract:

In this paper, we study the scheduling of n jobs on a single machine. Each of the
n jobs will be processed without interruption and becomes available for processing
at time zero. The goal is to find a processing order for the jobs, minimizing the total
completion time, total late work, total earliness time, and maximum earliness
maximum tardiness. The posed problems in this paper are as follows: The first
problem is to minimize the multi-criteria, which includes minimizing the total
completion time, total late work, total earliness time, maximum earliness, and
maximum tardiness that are denoted by YC;, YV, YEj, Emax, and Ty,
respectively. The second problem is to minimize the multi-objective functions
(BC; + XV, +3E;j + Emax + Tnax)- The theoretical section will present the
mathematical formula for the discussed problem. Because these problems are NP-
hard problems. It is difficult to determine the efficient (optimal) solution set for
these problems. Some special cases are shown and proven to find efficient (optimal)
solutions to the discussed problem. The significance of the dominance rule can be
applied to problems to improve and to get good solutions that will be highlighted.

Keywords: Maximum Earliness, Maximum Tardiness, Multi-Criteria (MC), Multi-
Objective (MO), Total Completion Times, Total Earliness Times, Total Late Work.
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1. Introduction

Since 1954, scheduling problems have received much attention in the literature. Initially,
the researchers looked at only one objective function[1]. In practical cases, the decision-
maker is bound to choose only one of some objectives. Nowadays, research on multi-criteria
scheduling problems has increased. Nagar et al [2] presented a survey of multiple and binary
problems in scheduling. In general, there are two structures for dealing with conflicting
criteria, namely hierarchical minification and concurrent minification [3]. The first one is the
primary criterion, and the other is the secondary criterion. In this case, one reduces the
primary criterion and chooses a table with a minimum value for the second criterion. In the
second approach, the effective solutions (Pareto set) will be generated, and the decision maker
is the one with the best composite objective function [4]. The first paper on a problem of this
kind was presented by Smith [5]. In this work, the problem of scheduling n jobs on a single
machine can be dealt with at most one job at a time without interruption. Each job becomes
available for processing at time zero, which requires a positive processing time.

In general, scheduling means allocating machines to jobs in order to complete all jobs
under imposed constraints. Problem with scheduling an N={1,...,n} group of jobs on a single
machine. Each job j,j € N has an integer processed time p;, the due date d;. Given the
schedule p = (p(l),p(Z), ...,p(n)), then for each job j, we calculate the completion time by
C1 =piand C; = Y1 pp, for j =2,3,..,n. The earliness of the job j is defined by E; =

max {dp]. -G, O}, the tardiness of the job j is defined by T; = max {Cj — dpj, 0} and the Late

work is defined by V; = min {Tj,ppj}. So, there is a total completion time }; ;e C;, total Late

work Y jenV;, maximum earliness Ep,q, = maxjen{Emayx}, and maximum tardiness Tpq, =
maxjen{Tmax}. The total completion time of 1// Y.C; problem is minimized by the short
processing time (SPT) rule which is optimal for Smith 1956 [5][6]. The maximum earliness
for the 1// Y E; problem is minimized by the minimum slack time(MST) rule [4][6]. The
maximum tardiness for 1// T,,,, problem is minimized by the earliest due date (EDD) rule to
Jackson 1955 [2][6], the two problems 1// YE;, 1// }V;, and 1// ¥T; are NP-hard
[6].13]1.[71.[8].[9].[10]. Any problem including cost functions as sub-problems is NP-hard.

Any problem including cost functions as sub-problems is NP-hard.

The most important literature survey for the last eight years. Z. M. Ali and T. S. Abdul
Razag 2015 [9] discussed the multi-criteria in order to establish a collection of efficient
solutions for the general problem, and scheduling problems that are researched on a single
machine are considered. 1/ F(X.C;, X T}, Twax ), U F(XC;, YE; , Enax ), U 3.C; + XTj + Thax
, UI' Y.Cj + X E;j + Tyax. M. G. Ahmed and F. H. Ali 2022[11]examined the multi-objective
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problem, which is the sum of completion time, tardiness, earliness, and late work. 1//
Y (E + T+ €+ U + V), YR (aE + BT + 6;C; +v;U; + wiV)), 1Sy
Zzl(ajijf + BifTjf + 0;sCir +vjUjr + wijjf). They suggested an Upper Bound (limits)
UB and a Lower Bound (limits) LB to be used in the application of the Branch and Bound
method. F. H. Ali and M. G. Ahmed 2022 [12] studied the multi-criteria(¥. €, Tomax R1),

multi-objective function (Z Cj+ Thax + RL)and found the optimal solution by using the
Branch and Bound method with and without DR then they used some heuristic methods. D.
A. Hassan, N. Mehdavi-Amiri, and A. M. Ramadan 2022[13] introduced a heuristic algorithm
to reduce the (Z Cj+ Epax + Tmax) in single-machine scheduling.

This paper displays multi-criteria scheduling problems and begins with some basic
scheduling concepts of the multi-criteria problem. Basic rules are given in Section (1). In
Section (2), the mathematical formula for the discussed problem will be presented and
provided information on the formulation and analysis of the problem. In Section (3), some
special cases are shown and proven which find some efficient (optimal) and suitable solutions
to the discussed problem. We also show there exists an effective solution to problems and
prove several rules. The Dominance Rule is described in Section (4). In Section (5), the
significant obtained results in the previous section are presented and discussed. The
conclusions and lists of future works are given in Section (6).

This paper uses some important rules and definitions:

Shortest Processing Tim (SPT): Jobs are sequenced in non-decreasing order of the
processing times p; (i.e.p; < p, < - < py), this rule is well-known to minimize }C; for
problem 1// 3.C; [5].

Earliest Due Date (EDD): Jobs are sequenced in non-decreasing order of their due dates
di(i.e.d; < d, < -+ < dy), this rule is used to minimize T,,,, for problem 1// Ty, 4, [14].
Minimum Slack Time (MST): Jobs are sequenced in non-decreasing order of their slack
times; = d; —p; (i.e.s; < s, < -+ < s,). To Minimize Ep,q, by using this rule [4].
Efficient Solution: A schedule a* is known as an efficient solution or the Pareto optimal or (
non-dominated) If we cannot find another schedule « that satisfies h;(a) < h;(a*),j =

1,2,..,n with at least one of the above considered a strict disparity. Another way is a* which
is dominated by a [13][6].

Definition: The o™ the schedule is considered to be optimal if there is no other schedule o
satisfies fj(o) < fj(6"),j = 1,..., k ( k: number of criteria), assuming strict inequality for at
least one of the aforementioned conditions. If not, then o is considered to be dominant over
o*[16][15].

2. Description of Multi-Criteria Scheduling Problem

In this section, the five-criteria scheduling problems to be studied will be described. Let
the number of jobs available at time O that is represented by N = {1,2,...,n}, (i.e,r; = 0 Vj €
N) and need processing on just one machine. There is a due date d; and a processing time p;
for every job j, a sequence of jobs p = (p4, P2, ..., pr) iS given, the earliest completion time

C; = {Flppkis generated, the T; = max {Cj —dp, 0} job j's tardiness, the earliness of job
j, Ej =max {dpj —Cj,O}, the tardiness of job j, T; =max {Cj —dpj,O}, and V; =

min {Tj,ppj} the job j's late work. The aim of this problem is to find a schedule o € §,
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where § is the set of all possible feasible schedules that minimize the quintet criteria
(2C;, XV, 2Ej, Emax> Trmax) » Which is denoted by (SccygyMgr), it can be mathematically
formulated as follows:

FS(CVE)MET = Min(ZCj' ZV]' ZEJ' Ermax Tmax)-

Subject to
Cijpj, j=1,..,n 3\
j-1
Cj=2ppk+ppj, j=1,2,...,Tl
k=1
’Tj = C] - dp], ] = 1, e, n ’ (S(CVE)MET)'
EJ-del.—Cj, j=1,..,n
Vj=min{Tj,ppj}, j=12,..,n
V; =20, E;j = 0,and T; = 0, j=1,..,n )

The p; indicates where job j falls in the ordering o and § represents the collection of all
schedules. Finding all efficient solutions to solve the problem (S(CVE)MET) is challenging,
since it is an NP-hard problem because the problems 1// Z}lej, 1// Z};l E; are NP-hard

[71[12].

Proposition (1): There is an efficient sequence for problem 1//F(ZCj,ZI/j,ZE-,Emax, Tmax)
that satisfies the short processing time rule.

Proof: (a) First, assume that p; # p; for all i, j. The unique sequence SPT, (SPT™) provides
aminimum of Y.C;. As a result, there no sequence exists § # SPT* such that

2G(6) <X G (SPT),XV;(6) < XV (SPT™), X E; (8) < X Ej (SPT"), Epax(6) <
Emax(SPT*) ) and Tmax(6) S Tmax(SPT*) (1)

The presence of at least one of the strict inequalities.

(b) If more than one short processing time sequence exists in some (jobs with equal
processing times), let SPT* be a sequence satisfying the short processing time rule and such
that jobs with equal processing times are in EDD where the sequences EDD and MST are
identical. If a set of jobs that are to be early or partially early is specified, then this EDD order
minimized Y, V; , Y E;.

Note that if the event is several jobs at the same processing times, the due date is considered
identical, or slack times, then SPT* is not unique. This shows that each SPT* sequencing is an
efficient, sequencing that does not satisfy the SPT rule which cannot dominate an SPT*
sequencing by (1). If & is an SPT sequence, it is not SPT* sequencing, because it cannot
dominate SPT* because

C;(8) = £C(SPT*), XV, (SPT*) < %V; (), L E; (SPT*) < % E; (8) , Emax (SPT*) <
Emax(8) ,and Ty (SPT™) < Ty (6) (2).

Hence, each one of the SPT* sequences is efficient as a result of the EDD and MST rules .

As mentioned in proposition (1), we show that the SPT rule is efficient for the problem
(SccveyMer), however, the next example shows that the EDD rule does not.

Example (1): Suppose the problem (Scyz)Mgr) has the following data:
Jobl Job2 Job3 Job4 Job5 Job6
p; | 10 4 3 3 8 7
4|13 10 8 17 10 14
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s;/3 6 5 14 2 7

A feasible schedule is provided by the SPT rule (3,4,2,6,5,1) and (4,3,2,6,5,1), hence
(XCi, 3V, 2Ej, Emax Tmax) = (96,21,16,11,22) from  SPT* order (3,42,6,51) and
(2C;, XV, 2Ej, Emax> Trmax) = (96,21,16,14,22) from SPT order (4,3,2,6,5,1), it is clear that
in the SPT*sequence the tasks (1,3) are arranged with equal processing time in the rule of
the MST or EDD. But EDD rule (3,2,5164) with (XC;, XV, %E, Emax Tmax) =
(117,258518) and MST rule (513.264) with (3G, %V, YEj, Emax Tnax) =
(139,22,2,2,18) hence SPT* the sequence gives an efficient solution for the problem
(ScveyMer) -

2.1 Description of Multi-Objective Scheduling 1/ ¥ C;j+YV; + YE; + Emax + Tmax
Sub-problem of Problem (S cygyMEr).
The problem 1//F(2Cj,2Vj,2Ej,Emax,Tmax) can deduce a sub-problem, that it

minimizes 1/ (XC; + YV; + Y.E; + Emax + Tax ). This problem is described as follows:
Assume that p is any schedule that can be expressed as follows for a certain schedule
p = (p1, P2, ) Pr):

Fsp = Min(ZCj + ZV] + ZE] + Enax + Tmax) \
subject to
Ci = Yie1Ppy j=12..,n
Cj = C(j—l) + ppj j=23,..,n
E; = dp]. -G j=12,..,n (SP).
TjZCj—dpj j=12,..,n
Vj = min{Tj,ppj} j=12,..,n
V;=20,E=20T; =0 j=12,..,n
J

The objective of the NP-hard problem sub-problem is to determine the order of jobs that need
to be processed on a single machine in order to minimize the sum of total completion time,
total late work, and the maximum earliness jobs.

Proposition (2): Each optimal solution for the sub-problem is an efficient solution to the
problem (ScyeyMer).

Proof: let 8 be an optimal schedule for the sub-problem. Suppose that § gives no efficient
solution for the problem (S(CVE)MET), then there is an efficient schedule say m for
(SccveyMgr) the problem such that:

2G(m) = X G(B), XVi(m) < XVi(B), X Ej(m) < X Ej(B), Emax(m) <

Emax(B),and Ty (1) < Trax (B).
At least one in which the inequality is strict. This means that:

2 G(m) + X V(1) + LEj (1) + Epax () + Tinax (M) < X GB) + X V;(B) + X E;(B) +
Emax(B) + Trmax(B), then m is a schedule that gives the best solution than g for (SP), but g is
an efficient schedule, and that is a contradiction with our assumption, then g must give an

efficient solution for (S¢cyg)Mgr) problem .
3. Special Cases (SC) for problems (S(cygMgr) and sub-problem.

This part studies various special cases of the (S(CVE)MET) the problem that must have an
efficient solution. The special case of the scheduling problem means we obtain an efficient
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(optimal) schedule (efficient (optimal) solution) directly without using the (BAB) or (DP)
method.

3.1 Special Cases for problem(ScygyMgr)

This part studies various special cases of the (S(CVE)MET) the problem that must have an
efficient solution:
Case (3.1.1): If pj =pandd; = jp,Vj in the schedule of p, then p gives the efficient
schedule for the problem (Scyz)Mgr ).
Proof: Since d; = C;,Vj € p, this means there is no job late and early s.t. E; = T; = V; = 0)
then i=1Ej = X7=1V; = Emax = Tax = 0. Then the problem
Ul F(EC;, XV, XEj, Emax Trnax) is reduced to 1/ Y7, C;. But, X7, G =Xl jp=
p (n22+n) which is constant. Hence, any schedule gives an efficient solution for (Scyg)Mer).
Case (3.1.2): If p;=djandp; =d;—d;_q,foralljinp (except1) then the short
processing time schedule a gives an efficient schedule for the problem (S(CVE)MET).
Proof: Since p, =d;andp, =d, —d; =d, —p;,then C;, =d, and C, =p, +p, =p; +
d, —p, = d then C, = d, and so on C; = d; forj = 1,2,..,n. Since C; = d; foralljino
then L; =0,Vj, and E; =T; =V; =0, s0 X V; = X Ej = Engx = Tinax = 0. Problem 1 //
(ZC]-,ZV]-,ZE]-,Emax, Tmax) is reduced to 1 // ¥, C;. But the rule that solved this problem was
short processing time. Then p provides an efficient solution to (S(CVE)MET) problem.
Case (3.1.3): If p; <...<ppands; <...<s, in schedule p then schedule p gives an
efficient solution for (S¢cyzyMgr) -
Proof: Since p; < -+ < py(which is SPT order) then }7_; C; is the minimum value, and at
the same time s; < -+ <'s, (which is MST order). Hence, E,,,, and Y E; are minimum. But
si=d;j—pj and dy —p; <...<d, —p, then d; —p; +p; <...<d,, —pn + pn (since
p1 < - <pn). Hence, d; <...< d,, which is EDD order. Since EDD order gives efficient
value for the Ty, and X7, Tj, then X7, V; are minimum. Hence, p an efficient solution to
the problem (S¢cy s Mgr) -
Case (3.14): If ¢; < dpj Vj, then sequence p = SPT = MST gives an efficient solution for
(SceveyMgr).
Proof: Since C; < dp; forall j, this means all jobs are early s.t.T; =V; = }V; = Tjax =
0 forall j, hence problem 1 // (XC;, XV}, Y.E}, Emax> Trmax) reduced to 1/ (X C; , YEj, Emax),
then o gives an efficient solution for (S(CVE)MET) since the short processing time rule
minimizes Y. C; and MST rule minimizes YE;, Epqy -
Case (3.1.5): If pj =pandd; = d whered > p, Vjinthe schedule p, then schedule p
gives an efficient solution for (S¢cyzyMgr) -
Proof: Since all processing times are identical for all j in p, and the due date for all jobs is
also identical (i.e, p;=pandd;=dVj)then ¥ .C;=p (nz%) E; = max{-L;,0} =
max{d — jp, 0}. Hence,
Emax = max{d — jp,0}=d—p and T; = max{Lj, 0} = max{jp—d,0} and Tpu, =
max{jp —d,0} =np—d and V;= min{L;, p} = min{max{jp — d,0},p}, thus} V;
Y.p —d = np — d, and there are two cases for p and d:

a) Ifdj=d=p; =p,thenC;=d (n(n;l)) and d < (;,V j , this means all jobs are late

s.t.E; = 0,V)) and V; = min{max{jd — d, 0},d}, hence }¥j_,V; =¥i;p—d=d(n—1).
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Problem 1 //(XC;, %V, Ej, Emax Tmax) i reduced to 1/ (X, X Vj, Trax) =
(d ("2;") ,nd —d,d(n — 1)) which is constant this means all solutions an efficient solutions

for any schedule p.

b) If dj =d >p;=p forallj then (1) If d > C; that means all jobs are early s.t.T; =
V=%V =0

Ej = max{0, -C; + d} = max{0,—jp + d}, Epay = max{—jp+d}=d —p, then the
problem 1// (XC;, XV;, YE;, Emax) Tmax) is reduced to 1/ (X C;, YEj, Epax)- (2) If d <
(this means all jobs are late such that E; = 0 for all j) and V; = min{T;, p;} = min{max{C; —

d,0},p}, then  problem  1//(XC;,XV;, YEj, Emax Tmax) i  reduced  to
W(ZC, 2V, Tmax) = (X C;,Xd —d,nd —d). (3) If thereare d < C;, d > C;,and d = (j,
then problem 1// (Z Cj ») V] ) Ej » Emax Tmax) = ul

(p (nzz'm),np —d,d —p, Ymax{jp — d,0},np — d). Then any schedule is an efficient

solution for problem 1 // F(ZCJ-,ZVJ-,ZE-,Emax,Tmax) because the six quantities are

constant.

Case (3.1.6): If the three schedules SPT,EDD, and MST have the same order (schedule) p,

then this schedule gives an efficient and unique solution for (S¢cy s Mgr).

Proof: Since YEj, Epmg, is minimized by MST rule and since SPT gives YE;(p) =

YE{(MST) , Epmax(p) = Epmax(MST) and Tyq, is minimized by the EDD rule , it is well-

known that Ty,q, is a lower bound for ¥7_;V,. ,i.e., Tnax(EDD) < X7, V), . Hence, if
}1=1Tj is minimum, thus minimum Z};lvpj. Then SPT schedule is efficient for the third

criterion and hence SPT is efficient for the problem.

To prove the uniqueness of p, let = be any schedule, then . C; (p = SPT) < ¥ C; (ir) and

YE(p=MST) < YE;(m) and Epqx(p = MST) < Epqx () and since Tpq, is the lower

bound for X V;, then T,.,(p=EDD)<}V;(p)<XV;(m), thus the solution

(260), 2V (0), ZE; (), Emax (0, Trnax (0)) dominates  the solution
(26, 5} (1), BE; (), Ema (), T () ).

3.2 Special Cases for Sub-problem (SP)

This part studies various special cases of the sub-problem of the problem that must have an
optimal solution:

Case (3.2.1): If pj =pandd; =jp,Vj in the schedule of p, then p gives the efficient
schedule for the problem (SP) .

Proof: The proof is the same as in the case (3.11).

Case (3.2.2): If p; =djandp; = d; —dj_q,forall jin p (except 1) then SPT schedule «
gives an efficient schedule for the problem (SP) .

Proof: The proof is the same as in the case (3.1.2).

Case (3.23 ): If p; <...<ppands; <...<s, in schedule a then schedule p gives an
efficient solution for the sub-problem .

Proof: The proof is the same as in the case ( 3.1.3).

Case (3.24): If ¢; < dpj Vj, then sequence p = SPT = MST gives an efficient solution for

(SceveyMr).
Proof: The proof is the same as in the case (3.1.4).
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Case (3.2.5): If pj =pandd; =d whered = p, Vjinthe schedule p, then schedule p
gives an EFSQ for the sub-problem.

Proof: The proof is the same as in the case (3.1.5).

Case (3.2.6):If the three schedules SPT,EDD, and MST have the same order (schedule) p,
then this schedule gives an efficient and unique solution for the sub-problem.

Proof: The proof is the same as in the case (3.1.6).

By computing, the objective functions (FS(CVE)MET) and (Fsp), respectively. Table 1 gives

examples that illustrate the special cases (3.1) and (3.2) of the (S(CVE)MET) and (SP)
problems with n = 6, respectively.

Table 1: Example of (SicysyMgr) s and (SP)'s special cases

Case pj&d; Stipulgt_ions Fs cypymer Fsp
(Conditions)
(3.1.1) | p; = 2and d; = 2,4,6,8,10,12. pj =pandd; = jp,Vj (42,0,0,0,0) 42
(3.2.1)
p; = 3and d; = 3,69,12,15,18, (63,0,0,0,0) 63
(3.1.2) | p; =234,6,810and d; = p; = djand p; = d; — (87,0,0,0,0) 87
2,5,9,15,23,33 . di_q,
(32.2) | p, =1,22445and d; = for j=2,..,n (49,0,0,0,0) 49
1,3,5,9,13,18 .
(3.13) | p; = 6,10,12,84,14 and 5; = p; <pjands; <s; (154,44,0,0,36) 234
2,4,4,4,0,4, hence forall j.
d]- = 8,14,16,12,4,18.
(823) | p; = 6,10,12,14,14,18 and 5; = (222,56,2,2,43) 325
2,4,8,10,12,13, hence dj =
8,14,20,24,26,31.
(3.14) | p; =852,643andd, = ¢ <d;,vj (78,0,8,3,0) 89
(3.2.4) | 30,16,2,20,12,6 .
p; =43221,1 and d]- = (35,0,4,1,0) 40
14,9,5,6,2,3
(315) |[p=4and 8=dandd >p. pj=p,d; =dforallj (84,16,4,4,16) 124
(325) | p=4=4. (84,20,0,0,20) 124
(3.1.6) pj = 2,84,7,6,3 and dj = SPT = EDD = (83,22,2,1,13) 121
(3.2.6) | 3,17,7,14,10,6 . MST for all j
pj = 2,3,5,8,9,9 and dj = (98,0,0,0,0) 98
2,5,10,18,27,36 .

Where F(s ., mgz) IS the multi-criteria of the problem (Sccve)Mer), Fsp is the multi-
objective function of the problem (SP).

4. Dominance Rules (DRs) for MSP

Dominance rules are most useful when a node in a tree that has a good lower bound can be
eliminated which is less than the optimal solution. Dominance rules can also be used using the
Branch and Bound procedure to cancel nodes that may be dominated by other nodes. The
effects of these improvements will help reduce the number of nodes that are too large for an
optimal solution. The sequence discussed is reduced when some control rules (DRs) are used.
In this part, we give some important definitions that are used in the remaining of this work:

Definition[17]: Graph G represents a finite number of nodes or vertices V and a finite number
of edges, connecting two vertices, and the edge connecting the vertex to itself is called a loop.
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Definition[17]: If n vertices make up a graph called G, then A(G) = [aij] is the matrix,
which is called an adjacency matrix, whose i*and j* element is 1 if there is at least one edge
0,ifi =jorij
between two vertices v; and v, and zero otherwise , a;; = { 1ifi = j
a;j, otherwise.
Theorem: If p; < p; and d; < d; then there is an optimal schedule for the problem (SP) in
which job i processing before job .
Proof: Suppose there is a sequence ¢ = o0;ijo, and a schedule ¢ = g,jio, which is obtained
by interchanging the jobs i and j in o. For these schedules, there are two cases, and in each
case, a comparison will be made between them.
First case: If p; < p;,d; < d; produces thats; < s; forevery ,j =1,2,..,n.
In this situation, there are the following: From the condition of the processing times, we
ensure that:
2Cx(0) < XC(6) (D.
From the condition of slack time s; <'s; , there are Ep,q,(0) < Epqx(6) then Y Ep(0) <
2E(9).
From p; < p; and d; < d; , this means } V(o) < }Vx(d) , and the condition on the due date
ensures that: T4, (0) < Thax(6) and YV, (o) < YV (6) (2).
Hence, 2Ck(0) + XVi(0) + XEk(0) + Enax(0) + Trax(0) < Xy (6) + XVi(6) +
ZEk(d') + Emax(d') + Tmax(d')-
Second case: If p; < pjand d; < d;, then it yields that s; > s; forevery ,j = 1,2,.. ,n.
In this situation, there is the following: From the condition on the processing times, we ensure
that (1) is satisfied, and the addition in cost is obtained from (1) is equal to p; — p; which
means  }.Cr(6) = X.Cx(0) +pj —p; (3).
Then, d; — Ci(0) =d; — C;(6) + pj —p;, since C;(0) = Ci(6) —p;+p;, and s;=d; —
p; = s; =d; —p; then d; —p; — Cj(6) = d; —p; — C;(6). Hence, d; —p; +p; — Ci(6) =
d; — Cj(6), from this deduce that E,q,(0) = Emqy(6) then Y Ex (o) = YEx(6) . Also, the
obtained cost from this inequality is equal to s; — s; which gives:

Emax(o-) = Emax(d-) + (SL' - Sj) and ZER(U) = ZEk(d) + (Si - Sj) (4)

Sincep; < p;thenp; —p; =20 Vi,j (5).

Since di < d] then d] - di >0 VL,]

From s; —s; <p; —p; , then E, ;. (d)+ (si — sj) < Enngx(6) + pj — p; and Y E(6) +
(si —s;) S TE(6) +pj — p; (6).

(by adding for both sides) By

We add Y E, (6)to both sides of (4), then we get Y.Cy(0) + Y E(0) + Epgx(0) < XCi(0) +
P — Db + ZEk(O.-) + Emax(d_) :

We add Y.C; (o) to both sides. From (2), we get

ch(a) + ZEk(G) + Emax(a) < ZCk(d_) + ZEk(d-) + Emax(d-) (7)

by adding T;,q, for both sides and from p; < p; and d; < d; , this means }Vy (o) < YV, (4),
from (2) hence  Y.Cx(0) + Y Ex(0) + Epax(0) + Thax(0) < XCr(6) + XEr(6) +
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Example (2): We use MSP with 6 jobs and the following processing time and due date:
joby job; jop, job, jobs jobs
13 23 23 27 29 13

The DRs by using theorem (1) are illustrated in Figure (1).

Figure 1. Dominant rule is shown in Example(2).

Notice that there are (9) DRs: 6— 2 ,6—3, 64, 655, 352, 3> 4,3— 5, 254, 2 5455
with (6) potential sequences some (or all ) are governed by the aforementioned Dominant
rules listed in Table 1. The adjacency matrix A is as follows:

0 app a1z a4 Q35 Qg6]
a,; 0 a3 1 1 0
Jaszz 10 1 1 0 _{Lifaij =0
A=l 0 o0 o0 1 o |wherea;= 0,ifa; =1
a5, 04gy 0 1 0 0
lag; 1 1 1 1 0 |

Table 2: The potential efficient sequences are subject to the dominant rule in Example (2).

EF.SE.W. DR (SceveyMer) (SP)
Seq 1 2 3 4 5 6 (XC.YV\,YEEnaxeTmax) 2C+ XVi + XE + Enax + Trnax

1 1 6 3 2 4 5 (146,26,6,3,14) 195
2=EDD 6 1 3 2 4 5 (135,19,14,10,14) 192
3 6 3 1 2 4 5 (125,22,27,17,14) 205

4 6 3 2 1 4 5 (116,26,40,17,14) 213

5 6 3 2 4 1 5 (111,25,55,17,18) 226
6=SPT 6 3 2 4 5 1 (110,14,49,17,30) 226

Where EF.SE. W. DR: Efficient Sequences with DR.
The sequences (1- 6) provide the problem (S(CVE)MET) an efficient value that can be shown in

Table 2, observe that the sequence number (2) in Table 2 provides an optimal value for the
problem (SP).

5. Results and Discussion
In this section, the following results are formed in the light of the previous theories,
propositions, and some cases based on them:
e The short processing time rule gives an efficient solution for the problem (S(CVE)MET),
and the optimal solution for the problem (sub-problem), this is proved in Proposition (1).
e Every optimal solution for the problem (sub-problem) is an efficient solution to the
problem (ScyzyMgr). This is proved in Proposition (2).
e The short processing time schedule o gives an efficient solution for problem (S(CVE)MET)
and an optimal solution for problem(sub-problem) when one of the following conditions
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is fulfilled: Dpj=pdi=jp,vj(j=
2,3,...,M). 2)py =dyandp;j =d; —d;_1,Y),(j=23,..,n) 3)C < dpj P =
SPT = MST ,Vj .

e Any schedule a gives an efficient solution for problem (S(CVE)MET) and optimal solution
for problem (sub-problem) when p; = p,d; = d,and d = p for all j in schedule .

6. Conclusions and Future Works
In this study, a mathematical model was created to address the research problems

WIF(XCi, %Vi, YEj, Emaxs Tmax), U 3.Ci + XV + YEj + Epax + Trnax- It has been proven
that certain rules provide efficient (optimal) solutions to the (S(CVE)MET) and (sub-problem)
problems, finding and proving certain cases that discover some efficient (optimal) solutions
for (S¢cyzyMer) and (sub-problem) the problem under consideration and demonstrating that
the short processing time and give earliest due date efficient (optimal) solutions to these
problems, demonstrated the significance of the Dominance Rule that can be used in this
problem to improve efficient solutions, and Suggest some problems to be discussed and
analyzed in future work:

1) USHF(3C, XV, YEj) Emax Trmax)-
2)  US¥C+ XV +YEj + Emax + Trnax-
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