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Abstract: 

     In this paper, we study the scheduling of   jobs on a single machine. Each of the 

n jobs will be processed without interruption and becomes available for processing 

at time zero. The goal is to find a processing order for the jobs, minimizing the total 

completion time, total late work, total earliness time, and maximum earliness 

maximum tardiness. The posed problems in this paper are as follows: The first 

problem is to minimize the multi-criteria, which includes minimizing the total 

completion time, total late work, total earliness time, maximum earliness, and 

maximum tardiness that are denoted by                           , 

respectively. The second problem is to minimize the multi-objective functions 

(                        ). The theoretical section will present the 

mathematical formula for the discussed problem. Because these problems are NP-

hard problems. It is difficult to determine the efficient (optimal) solution set for 

these problems. Some special cases are shown and proven to find efficient (optimal) 

solutions to the discussed problem. The significance of the dominance rule can be 

applied to problems to improve and to get good solutions that will be highlighted. 

 

Keywords:  Maximum Earliness, Maximum Tardiness, Multi-Criteria (MC), Multi-
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وقت اتمام العمل, و مجموع العمل المتأخر, و مجموع وقت  حل مشكلة متعددة المعايير: تقليل مجموع
 التبكير عن بدا العمل, و تقليل الحد الاعلى لوقت التبكير و الحد الاعلى لوقت التأخير عن العمل
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:  الخلاصه   

هذا البحث يدرس جدولة عدد من الاعمال على  الماكنة المنفردة. هدفنا  العثور علي تسلسل لمعالجة      
الاعمال لتقليل مجموع وقت اتمام العمل, و مجموع العمل المتأخر, و مجموع وقت التبكير عن بدا العمل, و 

تم معالجة كل عمل دون انقطاع تقليل الحد الاعلى لوقت التبكير و الحد الاعلى لوقت التأخير عن العمل ي
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جميع الاعمال متاحة للمعالجة عن الوقت صفر. هذا البحث سيتناول دراسة مسالة تقليل المعايير المتعددة 
والتي تشمل مجموع وقت اتمام العمل, و مجموع العمل المتأخر, و مجموع وقت التبكير عن بدا العمل, و 

 لاعلى لوقت التأخير عن العمل تقليل الحد الاعلى لوقت التبكير و الحد ا
و تقليل مجموع اجمالي وقت اتمام العمل, و مجموع العمل المتأخر, و (                     )

مجموع وقت التبكير عن بدا العمل, و تقليل الحد الاعلى لوقت التبكير و الحد الاعلى لوقت التأخير عن 
في هذه الورقة  يقدم الصيغة الرياضية  . الجزء النظري(                        )العمل  

للمسالة التي سيتم مناقشتها, و يتضمن اثبات بعض الحالات الخاصة التي تساعد على ايجاد الحلول الفعالة 
, لذا من الصعب تحديد  NP-hard)المثلى( المناسبة لها, نظرًا لأن مسالتنا تعد من  المسائل الصعبة 

( DRثلى( لهذه المسائل, و بالإضافة الى تسليط الضوء على قواعد الهيمنة )مجموعة كل الحلول الفعالة )الم
 لتقليل عدد التسلسلات التي يمكن تطبيقها على هذه المسالة لتحسين الحلول الفعالة.

  
1. Introduction 

     Since 1954, scheduling problems have received much attention in the literature. Initially, 

the researchers looked at only one objective function[1]. In practical cases, the decision-

maker is bound to choose only one of some objectives. Nowadays, research on multi-criteria 

scheduling problems has increased. Nagar et al [2] presented a survey of multiple and binary 

problems in scheduling. In general, there are two structures for dealing with conflicting 

criteria, namely hierarchical minification and concurrent minification [3]. The first one is the 

primary criterion, and the other is the secondary criterion. In this case, one reduces the 

primary criterion and chooses a table with a minimum value for the second criterion. In the 

second approach, the effective solutions (Pareto set) will be generated, and the decision maker 

is the one with the best composite objective function [4]. The first paper on a problem of this 

kind was presented by Smith [5]. In this work, the problem of scheduling n jobs on a single 

machine can be dealt with at most one job at a time without interruption. Each job becomes 

available for processing at time zero, which requires a positive processing time. 

 

     In general, scheduling means allocating machines to jobs in order to complete all jobs 

under imposed constraints. Problem with scheduling an N={1,…,n} group of jobs on a single 

machine. Each job       has an integer processed time   , the due date   . Given the 

schedule   ( ( )  ( )    ( )), then for each job  , we calculate the completion time by 

      and        

 
    for          . The earliness of the job   is defined by    

   {   
     }, the tardiness of the job   is defined by       {      

  } and the Late 

work is defined by       {      
}. So, there is a total completion time       , total Late 

work       , maximum earliness            {    }, and maximum tardiness      

      {    }. The total completion time of 1//     problem is minimized by the short 

processing time (SPT) rule which is optimal for Smith 1956 [5][6]. The maximum earliness 

for the 1//     problem is minimized by the minimum slack time(MST) rule [4][6]. The 

maximum tardiness for 1//      problem is minimized by the earliest due date (EDD) rule to 

Jackson 1955 [2] [6] , the two problems 1//    , 1//    , and 1//     are NP-hard 

[6],[3],[7],[8],[9],[10]. Any problem including cost functions as sub-problems is NP-hard. 

Any problem including cost functions as sub-problems is NP-hard. 

     The most important literature survey for the last eight years. Z. M. Ali and T. S. Abdul 

Razaq 2015 [9] discussed the multi-criteria in order to establish a collection of efficient 

solutions for the general problem, and scheduling problems that are researched on a single 

machine are considered. 1//  (            ), 1//  (             ), 1//              

, 1//             . M. G. Ahmed and F. H. Ali 2022[11]examined the multi-objective 
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problem, which is the sum of completion time, tardiness, earliness, and late work. 1// 

 (              )
 
  ,1//  (                        )

 
  , 1/  / 

 (                                  )
 
  . They suggested an Upper Bound (limits) 

UB and a Lower Bound (limits) LB to be used in the application of the Branch and Bound 

method. F. H. Ali and M. G. Ahmed 2022 [12] studied the multi-criteria(           ), 

multi-objective function (           )and found the optimal solution by using the 

Branch and Bound  method with and without DR then they used some heuristic methods. D. 

A. Hassan, N. Mehdavi-Amiri, and A. M. Ramadan 2022 [33]  introduced a heuristic algorithm 

to reduce the (             ) in single-machine scheduling. 

 

     This paper displays multi-criteria scheduling problems and begins with some basic 

scheduling concepts of the multi-criteria problem. Basic rules are given in Section (1). In 

Section (2), the mathematical formula for the discussed problem will be presented and  

provided information on the formulation and analysis of the problem. In Section (3), some 

special cases are shown and proven which find some efficient (optimal) and suitable solutions 

to the discussed problem. We also show there exists an effective solution to problems and 

prove several rules. The Dominance Rule is described in Section (4). In Section (5), the 

significant obtained results in the previous section are presented and discussed. The 

conclusions and lists of future works are given in Section (6). 

This paper uses some important rules and definitions: 
 

Shortest Processing Tim (SPT): Jobs are sequenced in non-decreasing order of the 

processing times    (              ), this rule is well-known to minimize     for 

problem 1//     [5]. 
 

Earliest Due Date (EDD): Jobs are sequenced in non-decreasing order of their due dates 

  (              ), this rule is used to minimize       for problem 1//      [14]. 

Minimum Slack Time (MST): Jobs are sequenced in non-decreasing order of their slack 

time          (              ). To minimize       by using this rule [4]. 

Efficient Solution: A schedule    is known as an efficient solution or the Pareto optimal or ( 

non-dominated) If we cannot find another schedule   that satisfies   ( )    ( 
 )   

         with at least one of the above considered a strict disparity. Another way is     which 

is dominated by   [13][6]. 
 

Definition: The    the schedule is considered to be optimal if there is no other schedule   

satisfies   ( )    ( 
 )         (  : number of criteria), assuming strict inequality for at 

least one of the aforementioned conditions. If not, then   is considered to be dominant over 

   [31][36] .  
 

2. Description of Multi-Criteria Scheduling Problem  

     In this section, the five-criteria scheduling problems to be studied will be described. Let 

the number of jobs available at time 0 that is represented by   {       }, (            

 ) and need processing on just one machine. There is a due date    and a processing time    

for every job  , a sequence of jobs   (          ) is given, the earliest completion time 

       

 
   is generated, the       {      

  }                   , the earliness of job 

 ,       {   
     }, the tardiness of job  ,       {      

  }, and    

   {      
}                      . The aim of this problem is to find a schedule     , 
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where   is the set of all possible feasible schedules that minimize the quintet criteria 

(                     ) , which is denoted by ( (   )   ), it can be mathematically 

formulated as follows: 

  (   )   
    (                     ). 

Subject to 
      

                                                           

   ∑    

   

   

                                          

         
                                                   

      
                                                     

      {      
}                                           

                                             }
 
 
 
 

 
 
 
 

            ( (   )   )  

      

     The     indicates where job   falls in the ordering   and   represents the collection of all 

schedules. Finding all efficient solutions to solve the problem ( (   )   ) is challenging, 

since it is an NP-hard problem because the problems 1//    
 
    , 1//    

 
    are NP-hard 

[7][12]. 

 

Proposition (1): There is an efficient sequence for problem 1// (                     ) 

that satisfies the short processing time rule. 

Proof: (a) First, assume that                   . The unique sequence SPT,  (    ) provides 

a minimum of     . As a result, there no sequence exists        such that 

   ( )     (    )    ( )     (    )    ( )     (    )     ( )  

    (    )          ( )      (    )                                             ( ).                                                                                   

The presence of at least one of the strict inequalities. 

 (b) If more than one short processing time sequence exists in some (jobs with equal 

processing times), let      be a sequence satisfying the short processing time rule and such 

that jobs with equal processing times are in EDD where the sequences EDD and MST are 

identical. If a set of jobs that are to be early or partially early is specified, then this EDD order 

minimized         . 

Note that if the event is several jobs at the same processing times, the due date is considered 

identical, or slack times, then      is not unique. This shows that each      sequencing is an 

efficient, sequencing that does not satisfy the SPT rule which cannot dominate an      

sequencing by ( ). If   is an SPT sequence, it is not SPT* sequencing, because it cannot 

dominate      because 

   ( )     (    )    (    )     ( )    (    )     ( )      (    )  

    ( )          (    )      ( )                                                ( )                                                                           
Hence, each one of the      sequences is efficient as a result of the EDD and MST rules . 

As mentioned in proposition (1), we show that the SPT rule is efficient for the problem 

( (   )   ), however, the next example shows that the EDD rule does not. 
 

Example (1): Suppose the problem ( (   )   ) has the following data:  

 Job1 Job2 Job3 Job4 Job5 Job6 

   10 4 3 3 8 7 

   13 10 8 17 10 14 
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   3 6 5 14 2 7 

 

A feasible schedule is provided by the SPT rule (           )     (           ), hence 

(                     )  (              ) from      order (           ) and 

(                     )  (              ) from SPT order (           ), it is clear that 

in the      sequence the tasks  (   ) are arranged with equal processing time in the rule of 

the MST or EDD. But EDD rule (           ) with (                     )  

(             ) and MST rule (           ) with (                     )  
(             ) hence       the sequence gives an efficient solution for the problem 

( (   )   ) . 

 

2.1 Description of Multi-Objective Scheduling 1//                         

Sub-problem of Problem ( (   )   ).  

        The problem 1// (                     ) can deduce a sub-problem,  that it 

minimizes 1// (                       ). This problem is described as follows: 

Assume that   is any schedule that can be expressed as follows for a certain schedule 

  (          ): 

       (                       )               

                                                               

       

 
                                                           

    (   )     
                                                   

      
                                                           

         
                                                        

      {      
}                                                   

                                                         
                     }

 
 
 
 
 

 
 
 
 
 

            (  )   

The objective of the NP-hard problem sub-problem is to determine the order of jobs that need 

to be processed on a single machine in order to minimize the sum of total completion time, 

total late work, and the maximum earliness jobs.  

 

Proposition (2): Each optimal solution for the sub-problem is an efficient solution to the 

problem ( (   )   ). 

Proof: let   be an optimal schedule for the sub-problem. Suppose that   gives no efficient 

solution for the problem ( (   )   ), then there is an efficient schedule say   for 

( (   )   ) the problem such that:  

   ( )     ( )     ( )     ( )    ( )     ( )      ( )  

    ( )          ( )      ( ). 
At least one in which the inequality is strict. This means that: 

   ( )     ( )     ( )      ( )      ( )      ( )     ( )     ( )  

    ( )      ( ), then   is a schedule that gives the best solution than   for (  ), but   is 

an efficient schedule, and that is a contradiction with our assumption, then   must give an 

efficient solution for ( (   )   ) problem . 

3. Special Cases (SC) for problems ( (   )   ) and sub-problem. 

      This part studies various special cases of the ( (   )   ) the problem that must have an 

efficient solution. The special case of the scheduling problem means we obtain an efficient 
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(optimal) schedule (efficient (optimal) solution) directly without using the (BAB) or (DP) 

method. 

 

3.1 Special Cases for problem( (   )   )  

     This part studies various special cases of the ( (   )   ) the problem that must have an 

efficient solution: 

Case (3.1.1): If                    in the schedule of  , then   gives the efficient 

schedule for the problem ( (   )   ). 

Proof: Since            , this means there is no job late and early               ) 

then        
 
                

   . Then the problem 

1//  (                     ) is reduced to 1//    
 
    . But,    

 
         

   

 (
    

 
) which is constant. Hence, any schedule gives an efficient solution for ( (   )   ). 

Case (3.1.2): If                                     (        ) then the short 

processing time schedule    gives an efficient schedule for the problem ( (   )   ). 

Proof: Since                                      and             
                    and so on                     . Since                       

then        , and           , so                    . Problem 1 // 

(                     ) is reduced to 1 //    . But the rule that solved this problem was 

short processing time. Then   provides an efficient solution to ( (   )   ) problem. 

Case (3.1.3): If                          in schedule   then schedule   gives an 

efficient solution for ( (   )   ) . 

Proof: Since        (which is SPT order) then    
 
    is the minimum value, and at 

the same time         (which is MST order). Hence,               are minimum. But 

         and                 then                        (since 

       ). Hence,            which is EDD order. Since EDD order gives efficient 

value for the      and    
 
   , then    

 
    are minimum. Hence,   an efficient solution to 

the problem ( (   )   ) . 

Case (3.1.4): If        
   , then sequence           gives an efficient solution for 

( (   )   ). 

Proof: Since       
           , this means all jobs are early                    

            , hence problem    (                     ) reduced to 1 // (            ), 

then   gives an efficient solution for ( (   )   ) since the short processing time rule 

minimizes      and MST rule minimizes          . 

Case (3.1.5): If                                               , then schedule   

gives an efficient solution for ( (   )   ) .  

Proof: Since all processing times are identical for all       , and the due date  for all jobs is 

also identical (i.e.,                    ) then      
     (

    

 
),       {     }  

   {      }  Hence, 

        {      }      and       {    }     {      } and      

   {      }       and       {    }     {   {      }  } , thus     
         , and there are two cases for        : 

a)  If                    (
 (   )

 
)              , this means all jobs are late 

           ) and       {   {      }  }, hence           (   ) 
   

 
   . 



Neamah and Kalaf                                    Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2724-2735 

2730 

Problem    (                     ) is reduced to 1// (            )   

( (
    

 
)        (   )) which is constant this means all solutions an efficient solutions 

for any schedule  . 

b) If           for all   then (1) If       that means all jobs are early        

        . 

      {       }     {       }         {     }     , then the 

problem 1// (                     ) is reduced to 1// (            ). (2) If      

(this means all jobs are late such that      for all  ) and       {     }     {   {   

   }  }   then problem    (                     ) is reduced to 

1// (            )  (             ). (3) If  there are     ,     , and     , 

then problem    (                     )   1// 

( (
    

 
)               {      }     ). Then any schedule is an efficient 

solution for problem 1 //  (                     ) because the six quantities are 

constant. 

Case (3.1.6): If the three schedules SPT,EDD, and MST have the same order (schedule)  , 

then this schedule gives an efficient and unique solution for ( (   )   ). 

Proof: Since           is minimized by MST rule and since SPT gives    ( )  

   (   ) ,     ( )      (   )           is minimized by the EDD rule , it is well-

known that      is a lower bound for     
  

             (   )      
  

   . Hence, if 

   
 
    is minimum, thus             

 
   . Then SPT schedule is efficient for the third 

criterion and hence SPT is efficient for the problem. 

To prove the uniqueness of   , let   be any schedule, then    (     )     ( ) and 

   (     )     ( )  and     (     )      ( ) and since      is the lower 

bound for    , then     (     )     ( )     ( ), thus the solution 

(   ( )    ( )    ( )     ( )     ( ))  dominates the solution 

(   ( )    ( )    ( )     ( )     ( )).  

 

3.2 Special Cases for Sub-problem (  )  
This part studies various special cases of the sub-problem of the problem that must have an 

optimal solution: 

Case (3.2.1): If                    in the schedule of  , then   gives the efficient 

schedule for the problem (  ) . 

Proof: The proof is the same as in the case (3.11). 

Case (3.2.2): If                                     (        ) then SPT schedule    

gives an efficient schedule for the problem (  ) . 

Proof: The proof is the same as in the case (3.1.2). 

 

Case (3.2.3 ): If                          in schedule   then schedule   gives an 

efficient solution for the sub-problem . 

Proof: The proof is the same as in the case ( 3.1.3). 

Case (3.2.4): If        
   , then sequence           gives an efficient solution for 

( (   )   ). 

Proof: The proof is the same as in the case (3.1.4). 
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Case (3.2.5): If                                               , then schedule   

gives an EFSQ for the sub-problem.  

Proof: The proof is the same as in the case (3.1.5).  

Case (3.2.6):If the three schedules SPT,EDD, and MST have the same order (schedule)  , 

then this schedule gives an efficient and unique solution for the sub-problem. 

Proof: The proof is the same as in the case (3.1.6).  

By computing, the objective functions (  (   )   
) and (   ), respectively. Table 1 gives 

examples that illustrate the special cases (3.1) and (3.2) of the ( (   )   ) and (  ) 

problems with      respectively. 

 

Table 1: Example of  ( (   )   )
 
   and (  )    special cases 

      (   )   
 Stipulations 

(Conditions) 

        Case 

   (          )                                              .  (     ) 

(     ) 

   (          )                           . 

87 (          )                

        

               

                       

               .  

(     ) 

 

(     )    (          )                        

               . 

    
 

(             )                 

           . 

                         

           , hence 

                  . 

(     ) 
 

 

(     )     (             )                            

              , hence    

                . 

   (          )                                  

                 . 

(     ) 

(     ) 

    (          )                       

               

    (            )                      

 

                     .  (     ) 
(     )     (            )       .  

    (            )         
                

                      

               .  

(     ) 

(     ) 

   (          )                        

                . 

Where  ( (   )   )  is the multi-criteria of the problem ( (   )   ),      is the multi-

objective function of the problem (  ). 

 

4. Dominance Rules (DRs) for MSP 

     Dominance rules are most useful when a node in a tree that has a good lower bound can be 

eliminated which is less than the optimal solution. Dominance rules can also be used using the 

Branch and Bound procedure to cancel nodes that may be dominated by other nodes. The 

effects of these improvements will help reduce the number of nodes that are too large for an 

optimal solution. The sequence discussed is reduced when some control rules (DRs) are used. 

In this part, we give some important definitions that are used in the remaining of this work: 

 

Definition[17]: Graph   represents a finite number of nodes or vertices   and a finite number 

of edges, connecting two vertices, and the edge connecting the vertex to itself is called a loop. 
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Definition[17]: If   vertices make up a graph called  , then  ( )  [   ] is the matrix, 

which is called an adjacency matrix, whose            element is 1 if there is at least one edge 

between two vertices           and zero otherwise ,     {

                   
                          
                   

 . 

Theorem: If        and       then there is an optimal schedule for the problem (  ) in 

which job   processing before job  . 

Proof: Suppose there is a sequence            and a schedule  ̇         which is obtained 

by interchanging the jobs   and   in σ. For these schedules, there are two cases, and in each 

case, a comparison will be made between them. 

First case: If               produces that       for every              . 

In this situation, there are the following: From the condition of the processing times, we 

ensure that: 

   ( )     ( ̇)                                     ( )  
From the condition of slack time       , there are     ( )      ( ̇)          ( )  

   ( ̇).  

From       and       , this means     ( )     ( ̇) , and the condition on the due date 

ensures that:      ( )      ( ̇)        ( )     ( ̇)                                              ( )                                   
Hence,    ( )      ( )     ( )      ( )      ( )     ( ̇)     ( ̇)  
   ( ̇)      ( ̇)      ( ̇). 

Second case: If       and      , then it yields that       for every               .  

In this situation, there is the following: From the condition on the processing times, we ensure 

that (1) is satisfied, and the addition in cost is obtained from (1) is equal to        which 

means        ( ̇)     ( )                       ( )          

Then,      ( )       ( ̇)       ,         ( )    ( ̇)       , and       

            then         ( ̇)          ( ̇). Hence,            ( ̇)  

     ( ̇), from this deduce that     ( )      ( ̇)         ( )     ( ̇) . Also, the 

obtained cost from this inequality is equal to       which gives: 

    ( )      ( ̇)  (     )        ( )     ( ̇)  (     )                             ( )                      

.  

Since                                       ( )    

Since                                  

From             , then      ( ̇)  (     )      ( ̇)               ( ̇)  

(     )     ( ̇)                        ( )      

 (                          ) By  

We add    ( ̇)to both sides of (4), then we get      ( )     ( )      ( )     ( )  
         ( ̇)      ( ̇) .        

We add    ( ) to both sides. From (2), we get  

    ( )     ( )      ( )     ( ̇)     ( ̇)      ( ̇)                    ( )    
by adding      for both sides and from       and       , this means     ( )     ( ̇),  

from (2) hence    ( )     ( )      ( )      ( )     ( ̇)     ( ̇)  
    ( ̇)      ( ̇) . 
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Example (2): We use MSP with 6 jobs and the following processing time and due date: 

                               

   13 4 3 8 12 3 

   13 23 23 27 29 13 

   0 19 20 19 17 10 

The DRs by using theorem (1) are illustrated in Figure (1). 

 

 

 

 

 

Figure 1:  Dominant rule is shown in Example(2). 

 

Notice that there are (9) DRs: 6 2 ,63, 64, 65, 32, 3 4, 3 5, 24, 2 5,45 

with (6) potential sequences some (or all ) are governed by the aforementioned Dominant 

rules listed in Table 1. The adjacency matrix   is as follows: 

  

[
 
 
 
 
 

                

          
        
        
          
        ]

 
 
 
 
 

, where     {
              

               
. 

 

Table 2: The potential efficient sequences are subject to the dominant rule in Example (2). 

 EF.SE. W. DR ( (   )   ) (  ) 

Seq 1 2 3 4 5 6 (                     )                          

3 3 6 3 2 4 1 (             )     

2=EDD 6 1 3 2 4 5 (               )     

3 6 3 1 2 4 5 (               )     

4 6 3 2 1 4 5 (               )     

1 6 3 2 4 1 5 (               )     

6=SPT 6 3 2 4 5 1 (               )     

Where EF.SE. W. DR: Efficient Sequences with DR. 

The sequences (1- 6) provide the problem ( (   )   ) an efficient value that can be shown in 

Table 2, observe that the sequence number (2) in Table 2 provides an optimal value for the 

problem (  ).  
 
5.  Results and Discussion 

     In this section, the following results are formed in the light of the previous theories, 

propositions, and some cases based on them:  

 The short processing time rule gives an efficient solution for the problem ( (   )   ), 

and the optimal solution for the problem (sub-problem), this is proved in Proposition (1). 

 Every optimal solution for the problem (sub-problem) is an efficient solution to the 

problem ( (   )   ). This is proved in Proposition (2). 

 The short processing time schedule   gives an efficient solution for problem ( (   )   ) 

and an optimal solution for problem(sub-problem) when one of the following conditions 

6 3 

1

4 5 
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is fulfilled:                                                                )                 (   

       )          )                          (          )         )       
    

             .   

 Any schedule   gives an efficient solution for problem ( (   )   ) and optimal solution 

for problem (sub-problem) when                    for all j in schedule  . 

 

6. Conclusions and Future Works 

     In this study, a mathematical model was created to address the research problems 

1// (                     )  1//                        . It has been proven 

that certain rules provide efficient (optimal) solutions to the  ( (   )   )     (sub-problem) 

problems, finding and proving certain cases that discover some efficient (optimal) solutions 

for ( (   )   )      (sub-problem) the problem under consideration and demonstrating that 

the short processing time and  give earliest due date efficient (optimal) solutions to these 

problems, demonstrated the significance of the Dominance Rule that can be used in this 

problem to improve efficient solutions, and Suggest some problems to be discussed and 

analyzed in future work: 

1) 1/  / (                     ). 

2) 1/  /                        . 

 
References 

[1] P. J.-C. B. Associate Professor Vincent T’kindt, Multicriteria Scheduling Theory, Models and 

Algorithms Translated, Second Edi. Springer Berlin Heidelberg New York. 

[2] H. C. Joksch, “Constraints , Objectives , Efficient Solutions And Suboptimization In 

Mathematical Programming Author ( s ): H . C . JOKSCH Source : Zeitschrift für die gesamte 

Staatswissenschaft / Journal of Institutional and Published by : Mohr Siebeck GmbH & Co . KG 

S,” J. Institutional Theor. Econ., no. Januar 1966, pp. 5–13, 2016, [Online]. Available: 

http://www.jstor.org/stable/40748933 

[3] B. A. Amin and A. M. Ramadan, “Novel Heuristic Approach for Solving Multi-objective 

Scheduling Problems,” Ibn AL- Haitham J. Pure Appl. Sci., vol. 34, no. 3, pp. 50–59, 2021, doi: 

10.30526/34.3.2677. 

[4] J. A. Hoogeveen, “Minimizing maximum promptness and maximum lateness on a single 

machine,” Math. Oper. Res., vol. 21, no. 1, pp. 100–114, 1996, doi: 10.1287/moor.21.1.100. 

[5] W. E. Smith, “Various optimizers for single-stage production,” Navel Res. Logist. Q., vol. 3, pp. 

59–66, 1956, doi: 10.1002/nav.3800030106. 

[6] A. A. Jawad, F. H. Ali, and W. S. Hasanain, “Using heuristic and branch and bound methods to 

solve a multi-criteria machine scheduling problem,” Iraqi J. Sci., vol. 61, no. 8, pp. 2055–2069, 

2020, doi: 10.24996/ijs.2020.61.8.21. 

[7] C. N. Potts and L. N. van Wassenhove, “Single Machine Scheduling to Minimize Total Late 

Work,” Oper. Res., vol. 40, no. 3, pp. 586–595, 1992, doi: 10.1287/opre.40.3.586. 

[8] F. S. Fandi, “Minimizing total Completion Time and Maximum late Work Simultaneously 

Notation and Basic Concepts :,” Ibn Al-Haitham J. Pure Appl. Sci., vol. 25, no. 3, pp. 356–366, 

2012, doi: ISSN: 1609 - 4042 - Electronic ISSN: 2521-340. 

[9] Z. M. Ali and T. S. Abdul Razaq, “Minimizing The Total Completion Times, The Total 

Tardinessand The Maximum Tardiness,” Ibn Al-Haitham J. Pure Appl. Sci., vol. 28, no. 2, pp. 

155–170, 2015, doi: 10.30526/34.3.2677. 

[10] M. Hashim, F. Hassan, and H. Ali, “Solving multi-objectives function problem using branch and 

bound and local search methods,” Int. J. Nonlinear Anal. Appl., vol. 13, no. 1, pp. 1649–1658, 

2022, [Online]. Available: http://dx.doi.org/10.22075/ijnaa.2022.5780%0ASolving 

[11] M. G. Ahmed and F. H. Ali, “Exact Method with Dominance Rules for Solving Scheduling on a 

Single Machine Problem with Multiobjective Function,” Al-Mustansiriyah J. Sci., vol. 33, no. 2, 

pp. 56–63, 2022, doi: 10.23851/mjs.v33i2.1091. 



Neamah and Kalaf                                    Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2724-2735 

2735 

[12] F. H. Ali and M. G. Ahmed, “Local Search Methods for Solving Total Completion Times, Range 

of Lateness and Maximum Tardiness Problem,” Proc. 6th Int. Eng. Conf. ’ ’Sustainable Technol. 

Dev. IEC 2020, pp. 103–108, doi: 10.1109/IEC49899.2020.9122821. 

[13] D. A. Hassan, N. Mehdavi-Amiri, and A. M. Ramadan, “A heuristic approach to minimize three 

criteria using efficient solutions,” Indones. J. Electr. Eng. Comput. Sci., vol. 6, no. 1, pp. 334–

341, 2022, doi: 10.11591/ijeecs.v26.i1.pp334-341. 

[14] T. S. Abdul-Razaq and A. O. Akram, “Local Search Algorithms for Multi-criteria Single Machine 

Scheduling Problem,” Ibn AL-Haitham J. Pure Appl. Sci., pp. 436–451, 2018, doi: 

10.30526/2017.ihsciconf.1817. 

[15] F. H. Ali and A. A. Jawad, “Minimizing the total completion time and total earliness time 

functions for a machine scheduling problem using local search methods,” Iraqi J. Sci., vol. 2020, 

pp.126–133, 2020, doi: 10.24996/ijs.2020.SI.1.17. 

[16] B. Atiya, A. J. K. Bakheet, I. T. Abbas, M. R. A. Bakar, L. L. Soon, and M. Bin Monsi, 

“Application of simulated annealing to solve multi-objectives for aggregate production planning,” 

AIP Conf. Proc., vol. 1739, no. November, 2016, doi: 10.1063/1.4952566. 

[17] G. Strang, Introduction to Linear Algebra, Fourth Edition. 2009. [Online]. Available: 

http://students.aiu.edu/submissions/profiles/resources/onlineBook/Y5B7M4_Introduction_to_Lin

ear_Algebra-_Fourth_Edition.pdf 

 

 

 

 

 


